| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfeldisj5 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeldisj4 38700 | . 2 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | |
| 2 | inecmo2 38326 | . . . 4 ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ∧ Rel ◡ E ) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ∧ Rel ◡ E )) | |
| 3 | relcnv 6059 | . . . . 5 ⊢ Rel ◡ E | |
| 4 | 3 | biantru 529 | . . . 4 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ∧ Rel ◡ E )) |
| 5 | 3 | biantru 529 | . . . 4 ⊢ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ∧ Rel ◡ E )) |
| 6 | 2, 4, 5 | 3bitr4i 303 | . . 3 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥) |
| 7 | eccnvep 38258 | . . . . . . . 8 ⊢ (𝑢 ∈ V → [𝑢]◡ E = 𝑢) | |
| 8 | 7 | elv 3443 | . . . . . . 7 ⊢ [𝑢]◡ E = 𝑢 |
| 9 | eccnvep 38258 | . . . . . . . 8 ⊢ (𝑣 ∈ V → [𝑣]◡ E = 𝑣) | |
| 10 | 9 | elv 3443 | . . . . . . 7 ⊢ [𝑣]◡ E = 𝑣 |
| 11 | 8, 10 | ineq12i 4171 | . . . . . 6 ⊢ ([𝑢]◡ E ∩ [𝑣]◡ E ) = (𝑢 ∩ 𝑣) |
| 12 | 11 | eqeq1i 2734 | . . . . 5 ⊢ (([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅ ↔ (𝑢 ∩ 𝑣) = ∅) |
| 13 | 12 | orbi2i 912 | . . . 4 ⊢ ((𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| 14 | 13 | 2ralbii 3104 | . . 3 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| 15 | brcnvep 38242 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
| 16 | 15 | elv 3443 | . . . . 5 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
| 17 | 16 | rmobii 3353 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 18 | 17 | albii 1819 | . . 3 ⊢ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 19 | 6, 14, 18 | 3bitr3i 301 | . 2 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 20 | 1, 19 | bitr4i 278 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1538 = wceq 1540 ∀wral 3044 ∃*wrmo 3344 Vcvv 3438 ∩ cin 3904 ∅c0 4286 class class class wbr 5095 E cep 5522 ◡ccnv 5622 Rel wrel 5628 [cec 8630 ElDisj weldisj 38193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-eprel 5523 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-ec 8634 df-coss 38390 df-cnvrefrel 38506 df-disjALTV 38685 df-eldisj 38687 |
| This theorem is referenced by: eqvreldisj2 38805 |
| Copyright terms: Public domain | W3C validator |