Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj5 Structured version   Visualization version   GIF version

Theorem dfeldisj5 36832
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj5 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Distinct variable group:   𝑢,𝐴,𝑣

Proof of Theorem dfeldisj5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfeldisj4 36831 . 2 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
2 inecmo2 36488 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ) ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
3 relcnv 6012 . . . . 5 Rel E
43biantru 530 . . . 4 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ))
53biantru 530 . . . 4 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
62, 4, 53bitr4i 303 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢 E 𝑥)
7 eccnvep 36417 . . . . . . . 8 (𝑢 ∈ V → [𝑢] E = 𝑢)
87elv 3438 . . . . . . 7 [𝑢] E = 𝑢
9 eccnvep 36417 . . . . . . . 8 (𝑣 ∈ V → [𝑣] E = 𝑣)
109elv 3438 . . . . . . 7 [𝑣] E = 𝑣
118, 10ineq12i 4144 . . . . . 6 ([𝑢] E ∩ [𝑣] E ) = (𝑢𝑣)
1211eqeq1i 2743 . . . . 5 (([𝑢] E ∩ [𝑣] E ) = ∅ ↔ (𝑢𝑣) = ∅)
1312orbi2i 910 . . . 4 ((𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
14132ralbii 3093 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
15 brcnvep 36404 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
1615elv 3438 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
1716rmobii 3331 . . . 4 (∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
1817albii 1822 . . 3 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
196, 14, 183bitr3i 301 . 2 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
201, 19bitr4i 277 1 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 844  wal 1537   = wceq 1539  wral 3064  ∃*wrmo 3067  Vcvv 3432  cin 3886  c0 4256   class class class wbr 5074   E cep 5494  ccnv 5588  Rel wrel 5594  [cec 8496   ElDisj weldisj 36369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ec 8500  df-coss 36537  df-cnvrefrel 36643  df-disjALTV 36816  df-eldisj 36818
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator