| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfeldisj5 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfeldisj4 38764 | . 2 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | |
| 2 | inecmo2 38390 | . . . 4 ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ∧ Rel ◡ E ) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ∧ Rel ◡ E )) | |
| 3 | relcnv 6053 | . . . . 5 ⊢ Rel ◡ E | |
| 4 | 3 | biantru 529 | . . . 4 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ∧ Rel ◡ E )) |
| 5 | 3 | biantru 529 | . . . 4 ⊢ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ∧ Rel ◡ E )) |
| 6 | 2, 4, 5 | 3bitr4i 303 | . . 3 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥) |
| 7 | eccnvep 38322 | . . . . . . . 8 ⊢ (𝑢 ∈ V → [𝑢]◡ E = 𝑢) | |
| 8 | 7 | elv 3441 | . . . . . . 7 ⊢ [𝑢]◡ E = 𝑢 |
| 9 | eccnvep 38322 | . . . . . . . 8 ⊢ (𝑣 ∈ V → [𝑣]◡ E = 𝑣) | |
| 10 | 9 | elv 3441 | . . . . . . 7 ⊢ [𝑣]◡ E = 𝑣 |
| 11 | 8, 10 | ineq12i 4168 | . . . . . 6 ⊢ ([𝑢]◡ E ∩ [𝑣]◡ E ) = (𝑢 ∩ 𝑣) |
| 12 | 11 | eqeq1i 2736 | . . . . 5 ⊢ (([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅ ↔ (𝑢 ∩ 𝑣) = ∅) |
| 13 | 12 | orbi2i 912 | . . . 4 ⊢ ((𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| 14 | 13 | 2ralbii 3107 | . . 3 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| 15 | brcnvep 38306 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
| 16 | 15 | elv 3441 | . . . . 5 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
| 17 | 16 | rmobii 3354 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 18 | 17 | albii 1820 | . . 3 ⊢ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 19 | 6, 14, 18 | 3bitr3i 301 | . 2 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
| 20 | 1, 19 | bitr4i 278 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∨ wo 847 ∀wal 1539 = wceq 1541 ∀wral 3047 ∃*wrmo 3345 Vcvv 3436 ∩ cin 3901 ∅c0 4283 class class class wbr 5091 E cep 5515 ◡ccnv 5615 Rel wrel 5621 [cec 8620 ElDisj weldisj 38257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-id 5511 df-eprel 5516 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-ec 8624 df-coss 38454 df-cnvrefrel 38570 df-disjALTV 38749 df-eldisj 38751 |
| This theorem is referenced by: eqvreldisj2 38869 |
| Copyright terms: Public domain | W3C validator |