![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj5 | Structured version Visualization version GIF version |
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
dfeldisj5 | ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfeldisj4 38094 | . 2 ⊢ ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) | |
2 | inecmo2 37729 | . . . 4 ⊢ ((∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ∧ Rel ◡ E ) ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ∧ Rel ◡ E )) | |
3 | relcnv 6094 | . . . . 5 ⊢ Rel ◡ E | |
4 | 3 | biantru 529 | . . . 4 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ∧ Rel ◡ E )) |
5 | 3 | biantru 529 | . . . 4 ⊢ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ∧ Rel ◡ E )) |
6 | 2, 4, 5 | 3bitr4i 303 | . . 3 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥) |
7 | eccnvep 37654 | . . . . . . . 8 ⊢ (𝑢 ∈ V → [𝑢]◡ E = 𝑢) | |
8 | 7 | elv 3472 | . . . . . . 7 ⊢ [𝑢]◡ E = 𝑢 |
9 | eccnvep 37654 | . . . . . . . 8 ⊢ (𝑣 ∈ V → [𝑣]◡ E = 𝑣) | |
10 | 9 | elv 3472 | . . . . . . 7 ⊢ [𝑣]◡ E = 𝑣 |
11 | 8, 10 | ineq12i 4203 | . . . . . 6 ⊢ ([𝑢]◡ E ∩ [𝑣]◡ E ) = (𝑢 ∩ 𝑣) |
12 | 11 | eqeq1i 2729 | . . . . 5 ⊢ (([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅ ↔ (𝑢 ∩ 𝑣) = ∅) |
13 | 12 | orbi2i 909 | . . . 4 ⊢ ((𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
14 | 13 | 2ralbii 3120 | . . 3 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ ([𝑢]◡ E ∩ [𝑣]◡ E ) = ∅) ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
15 | brcnvep 37637 | . . . . . 6 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
16 | 15 | elv 3472 | . . . . 5 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
17 | 16 | rmobii 3376 | . . . 4 ⊢ (∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ ∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
18 | 17 | albii 1813 | . . 3 ⊢ (∀𝑥∃*𝑢 ∈ 𝐴 𝑢◡ E 𝑥 ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
19 | 6, 14, 18 | 3bitr3i 301 | . 2 ⊢ (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅) ↔ ∀𝑥∃*𝑢 ∈ 𝐴 𝑥 ∈ 𝑢) |
20 | 1, 19 | bitr4i 278 | 1 ⊢ ( ElDisj 𝐴 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐴 (𝑢 = 𝑣 ∨ (𝑢 ∩ 𝑣) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∨ wo 844 ∀wal 1531 = wceq 1533 ∀wral 3053 ∃*wrmo 3367 Vcvv 3466 ∩ cin 3940 ∅c0 4315 class class class wbr 5139 E cep 5570 ◡ccnv 5666 Rel wrel 5672 [cec 8698 ElDisj weldisj 37583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-id 5565 df-eprel 5571 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-ec 8702 df-coss 37785 df-cnvrefrel 37901 df-disjALTV 38079 df-eldisj 38081 |
This theorem is referenced by: eqvreldisj2 38199 |
Copyright terms: Public domain | W3C validator |