Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj5 Structured version   Visualization version   GIF version

Theorem dfeldisj5 36759
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj5 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Distinct variable group:   𝑢,𝐴,𝑣

Proof of Theorem dfeldisj5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfeldisj4 36758 . 2 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
2 inecmo2 36415 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ) ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
3 relcnv 6001 . . . . 5 Rel E
43biantru 529 . . . 4 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ))
53biantru 529 . . . 4 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
62, 4, 53bitr4i 302 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢 E 𝑥)
7 eccnvep 36344 . . . . . . . 8 (𝑢 ∈ V → [𝑢] E = 𝑢)
87elv 3428 . . . . . . 7 [𝑢] E = 𝑢
9 eccnvep 36344 . . . . . . . 8 (𝑣 ∈ V → [𝑣] E = 𝑣)
109elv 3428 . . . . . . 7 [𝑣] E = 𝑣
118, 10ineq12i 4141 . . . . . 6 ([𝑢] E ∩ [𝑣] E ) = (𝑢𝑣)
1211eqeq1i 2743 . . . . 5 (([𝑢] E ∩ [𝑣] E ) = ∅ ↔ (𝑢𝑣) = ∅)
1312orbi2i 909 . . . 4 ((𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
14132ralbii 3091 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
15 brcnvep 36331 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
1615elv 3428 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
1716rmobii 3322 . . . 4 (∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
1817albii 1823 . . 3 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
196, 14, 183bitr3i 300 . 2 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
201, 19bitr4i 277 1 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wo 843  wal 1537   = wceq 1539  wral 3063  ∃*wrmo 3066  Vcvv 3422  cin 3882  c0 4253   class class class wbr 5070   E cep 5485  ccnv 5579  Rel wrel 5585  [cec 8454   ElDisj weldisj 36296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rmo 3071  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ec 8458  df-coss 36464  df-cnvrefrel 36570  df-disjALTV 36743  df-eldisj 36745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator