Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj5 Structured version   Visualization version   GIF version

Theorem dfeldisj5 38713
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj5 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Distinct variable group:   𝑢,𝐴,𝑣

Proof of Theorem dfeldisj5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfeldisj4 38712 . 2 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
2 inecmo2 38338 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ) ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
3 relcnv 6075 . . . . 5 Rel E
43biantru 529 . . . 4 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ))
53biantru 529 . . . 4 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
62, 4, 53bitr4i 303 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢 E 𝑥)
7 eccnvep 38270 . . . . . . . 8 (𝑢 ∈ V → [𝑢] E = 𝑢)
87elv 3452 . . . . . . 7 [𝑢] E = 𝑢
9 eccnvep 38270 . . . . . . . 8 (𝑣 ∈ V → [𝑣] E = 𝑣)
109elv 3452 . . . . . . 7 [𝑣] E = 𝑣
118, 10ineq12i 4181 . . . . . 6 ([𝑢] E ∩ [𝑣] E ) = (𝑢𝑣)
1211eqeq1i 2734 . . . . 5 (([𝑢] E ∩ [𝑣] E ) = ∅ ↔ (𝑢𝑣) = ∅)
1312orbi2i 912 . . . 4 ((𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
14132ralbii 3108 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
15 brcnvep 38254 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
1615elv 3452 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
1716rmobii 3362 . . . 4 (∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
1817albii 1819 . . 3 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
196, 14, 183bitr3i 301 . 2 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
201, 19bitr4i 278 1 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wal 1538   = wceq 1540  wral 3044  ∃*wrmo 3353  Vcvv 3447  cin 3913  c0 4296   class class class wbr 5107   E cep 5537  ccnv 5637  Rel wrel 5643  [cec 8669   ElDisj weldisj 38205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-eprel 5538  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-coss 38402  df-cnvrefrel 38518  df-disjALTV 38697  df-eldisj 38699
This theorem is referenced by:  eqvreldisj2  38817
  Copyright terms: Public domain W3C validator