Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj5 Structured version   Visualization version   GIF version

Theorem dfeldisj5 37586
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj5 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Distinct variable group:   𝑢,𝐴,𝑣

Proof of Theorem dfeldisj5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfeldisj4 37585 . 2 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
2 inecmo2 37220 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ) ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
3 relcnv 6103 . . . . 5 Rel E
43biantru 530 . . . 4 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ))
53biantru 530 . . . 4 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
62, 4, 53bitr4i 302 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢 E 𝑥)
7 eccnvep 37145 . . . . . . . 8 (𝑢 ∈ V → [𝑢] E = 𝑢)
87elv 3480 . . . . . . 7 [𝑢] E = 𝑢
9 eccnvep 37145 . . . . . . . 8 (𝑣 ∈ V → [𝑣] E = 𝑣)
109elv 3480 . . . . . . 7 [𝑣] E = 𝑣
118, 10ineq12i 4210 . . . . . 6 ([𝑢] E ∩ [𝑣] E ) = (𝑢𝑣)
1211eqeq1i 2737 . . . . 5 (([𝑢] E ∩ [𝑣] E ) = ∅ ↔ (𝑢𝑣) = ∅)
1312orbi2i 911 . . . 4 ((𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
14132ralbii 3128 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
15 brcnvep 37128 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
1615elv 3480 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
1716rmobii 3384 . . . 4 (∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
1817albii 1821 . . 3 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
196, 14, 183bitr3i 300 . 2 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
201, 19bitr4i 277 1 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wo 845  wal 1539   = wceq 1541  wral 3061  ∃*wrmo 3375  Vcvv 3474  cin 3947  c0 4322   class class class wbr 5148   E cep 5579  ccnv 5675  Rel wrel 5681  [cec 8700   ElDisj weldisj 37074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8704  df-coss 37276  df-cnvrefrel 37392  df-disjALTV 37570  df-eldisj 37572
This theorem is referenced by:  eqvreldisj2  37690
  Copyright terms: Public domain W3C validator