Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj5 Structured version   Visualization version   GIF version

Theorem dfeldisj5 38765
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj5 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Distinct variable group:   𝑢,𝐴,𝑣

Proof of Theorem dfeldisj5
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 dfeldisj4 38764 . 2 ( ElDisj 𝐴 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
2 inecmo2 38390 . . . 4 ((∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ) ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
3 relcnv 6053 . . . . 5 Rel E
43biantru 529 . . . 4 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ∧ Rel E ))
53biantru 529 . . . 4 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ∧ Rel E ))
62, 4, 53bitr4i 303 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑢 E 𝑥)
7 eccnvep 38322 . . . . . . . 8 (𝑢 ∈ V → [𝑢] E = 𝑢)
87elv 3441 . . . . . . 7 [𝑢] E = 𝑢
9 eccnvep 38322 . . . . . . . 8 (𝑣 ∈ V → [𝑣] E = 𝑣)
109elv 3441 . . . . . . 7 [𝑣] E = 𝑣
118, 10ineq12i 4168 . . . . . 6 ([𝑢] E ∩ [𝑣] E ) = (𝑢𝑣)
1211eqeq1i 2736 . . . . 5 (([𝑢] E ∩ [𝑣] E ) = ∅ ↔ (𝑢𝑣) = ∅)
1312orbi2i 912 . . . 4 ((𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
14132ralbii 3107 . . 3 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ([𝑢] E ∩ [𝑣] E ) = ∅) ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
15 brcnvep 38306 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
1615elv 3441 . . . . 5 (𝑢 E 𝑥𝑥𝑢)
1716rmobii 3354 . . . 4 (∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∃*𝑢𝐴 𝑥𝑢)
1817albii 1820 . . 3 (∀𝑥∃*𝑢𝐴 𝑢 E 𝑥 ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
196, 14, 183bitr3i 301 . 2 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅) ↔ ∀𝑥∃*𝑢𝐴 𝑥𝑢)
201, 19bitr4i 278 1 ( ElDisj 𝐴 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢𝑣) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wo 847  wal 1539   = wceq 1541  wral 3047  ∃*wrmo 3345  Vcvv 3436  cin 3901  c0 4283   class class class wbr 5091   E cep 5515  ccnv 5615  Rel wrel 5621  [cec 8620   ElDisj weldisj 38257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-eprel 5516  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-ec 8624  df-coss 38454  df-cnvrefrel 38570  df-disjALTV 38749  df-eldisj 38751
This theorem is referenced by:  eqvreldisj2  38869
  Copyright terms: Public domain W3C validator