Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjeq Structured version   Visualization version   GIF version

Theorem eldisjeq 38718
Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eldisjeq (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))

Proof of Theorem eldisjeq
StepHypRef Expression
1 reseq2 5929 . . 3 (𝐴 = 𝐵 → ( E ↾ 𝐴) = ( E ↾ 𝐵))
21disjeqd 38713 . 2 (𝐴 = 𝐵 → ( Disj ( E ↾ 𝐴) ↔ Disj ( E ↾ 𝐵)))
3 df-eldisj 38684 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
4 df-eldisj 38684 . 2 ( ElDisj 𝐵 ↔ Disj ( E ↾ 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   E cep 5522  ccnv 5622  cres 5625   Disj wdisjALTV 38188   ElDisj weldisj 38190
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-coss 38387  df-cnvrefrel 38503  df-funALTV 38659  df-disjALTV 38682  df-eldisj 38684
This theorem is referenced by:  eldisjeqi  38719  eldisjeqd  38720  eqvrelqseqdisj2  38806
  Copyright terms: Public domain W3C validator