| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjeq | ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 5972 | . . 3 ⊢ (𝐴 = 𝐵 → (◡ E ↾ 𝐴) = (◡ E ↾ 𝐵)) | |
| 2 | 1 | disjeqd 38671 | . 2 ⊢ (𝐴 = 𝐵 → ( Disj (◡ E ↾ 𝐴) ↔ Disj (◡ E ↾ 𝐵))) |
| 3 | df-eldisj 38642 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 4 | df-eldisj 38642 | . 2 ⊢ ( ElDisj 𝐵 ↔ Disj (◡ E ↾ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 E cep 5563 ◡ccnv 5664 ↾ cres 5667 Disj wdisjALTV 38150 ElDisj weldisj 38152 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-coss 38346 df-cnvrefrel 38462 df-funALTV 38617 df-disjALTV 38640 df-eldisj 38642 |
| This theorem is referenced by: eldisjeqi 38677 eldisjeqd 38678 eqvrelqseqdisj2 38764 |
| Copyright terms: Public domain | W3C validator |