Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldisjeq Structured version   Visualization version   GIF version

Theorem eldisjeq 38726
Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
eldisjeq (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))

Proof of Theorem eldisjeq
StepHypRef Expression
1 reseq2 5953 . . 3 (𝐴 = 𝐵 → ( E ↾ 𝐴) = ( E ↾ 𝐵))
21disjeqd 38721 . 2 (𝐴 = 𝐵 → ( Disj ( E ↾ 𝐴) ↔ Disj ( E ↾ 𝐵)))
3 df-eldisj 38692 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
4 df-eldisj 38692 . 2 ( ElDisj 𝐵 ↔ Disj ( E ↾ 𝐵))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   E cep 5545  ccnv 5645  cres 5648   Disj wdisjALTV 38200   ElDisj weldisj 38202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-br 5116  df-opab 5178  df-id 5541  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-coss 38396  df-cnvrefrel 38512  df-funALTV 38667  df-disjALTV 38690  df-eldisj 38692
This theorem is referenced by:  eldisjeqi  38727  eldisjeqd  38728  eqvrelqseqdisj2  38814
  Copyright terms: Public domain W3C validator