| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldisjeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for disjoint elementhood. (Contributed by Peter Mazsa, 23-Sep-2021.) |
| Ref | Expression |
|---|---|
| eldisjeq | ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 5927 | . . 3 ⊢ (𝐴 = 𝐵 → (◡ E ↾ 𝐴) = (◡ E ↾ 𝐵)) | |
| 2 | 1 | disjeqd 38854 | . 2 ⊢ (𝐴 = 𝐵 → ( Disj (◡ E ↾ 𝐴) ↔ Disj (◡ E ↾ 𝐵))) |
| 3 | df-eldisj 38825 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 4 | df-eldisj 38825 | . 2 ⊢ ( ElDisj 𝐵 ↔ Disj (◡ E ↾ 𝐵)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → ( ElDisj 𝐴 ↔ ElDisj 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 E cep 5518 ◡ccnv 5618 ↾ cres 5621 Disj wdisjALTV 38276 ElDisj weldisj 38278 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38533 df-cnvrefrel 38639 df-funALTV 38800 df-disjALTV 38823 df-eldisj 38825 |
| This theorem is referenced by: eldisjeqi 38860 eldisjeqd 38861 eqvrelqseqdisj2 38947 |
| Copyright terms: Public domain | W3C validator |