| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfeldisj2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| dfeldisj2 | ⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-eldisj 38725 | . 2 ⊢ ( ElDisj 𝐴 ↔ Disj (◡ E ↾ 𝐴)) | |
| 2 | relres 5992 | . . 3 ⊢ Rel (◡ E ↾ 𝐴) | |
| 3 | dfdisjALTV2 38732 | . . 3 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ( ≀ ◡(◡ E ↾ 𝐴) ⊆ I ∧ Rel (◡ E ↾ 𝐴))) | |
| 4 | 2, 3 | mpbiran2 710 | . 2 ⊢ ( Disj (◡ E ↾ 𝐴) ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) |
| 5 | 1, 4 | bitri 275 | 1 ⊢ ( ElDisj 𝐴 ↔ ≀ ◡(◡ E ↾ 𝐴) ⊆ I ) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊆ wss 3926 I cid 5547 E cep 5552 ◡ccnv 5653 ↾ cres 5656 Rel wrel 5659 ≀ ccoss 38199 Disj wdisjALTV 38233 ElDisj weldisj 38235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-coss 38429 df-cnvrefrel 38545 df-disjALTV 38723 df-eldisj 38725 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |