Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj2 Structured version   Visualization version   GIF version

Theorem dfeldisj2 38674
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj2 ( ElDisj 𝐴 ↔ ≀ ( E ↾ 𝐴) ⊆ I )

Proof of Theorem dfeldisj2
StepHypRef Expression
1 df-eldisj 38663 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 6035 . . 3 Rel ( E ↾ 𝐴)
3 dfdisjALTV2 38670 . . 3 ( Disj ( E ↾ 𝐴) ↔ ( ≀ ( E ↾ 𝐴) ⊆ I ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 709 . 2 ( Disj ( E ↾ 𝐴) ↔ ≀ ( E ↾ 𝐴) ⊆ I )
51, 4bitri 275 1 ( ElDisj 𝐴 ↔ ≀ ( E ↾ 𝐴) ⊆ I )
Colors of variables: wff setvar class
Syntax hints:  wb 206  wss 3976   I cid 5592   E cep 5598  ccnv 5699  cres 5702  Rel wrel 5705  ccoss 38135   Disj wdisjALTV 38169   ElDisj weldisj 38171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-coss 38367  df-cnvrefrel 38483  df-disjALTV 38661  df-eldisj 38663
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator