Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfeldisj2 Structured version   Visualization version   GIF version

Theorem dfeldisj2 38044
Description: Alternate definition of the disjoint elementhood predicate. (Contributed by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
dfeldisj2 ( ElDisj 𝐴 ↔ ≀ ( E ↾ 𝐴) ⊆ I )

Proof of Theorem dfeldisj2
StepHypRef Expression
1 df-eldisj 38033 . 2 ( ElDisj 𝐴 ↔ Disj ( E ↾ 𝐴))
2 relres 6000 . . 3 Rel ( E ↾ 𝐴)
3 dfdisjALTV2 38040 . . 3 ( Disj ( E ↾ 𝐴) ↔ ( ≀ ( E ↾ 𝐴) ⊆ I ∧ Rel ( E ↾ 𝐴)))
42, 3mpbiran2 707 . 2 ( Disj ( E ↾ 𝐴) ↔ ≀ ( E ↾ 𝐴) ⊆ I )
51, 4bitri 275 1 ( ElDisj 𝐴 ↔ ≀ ( E ↾ 𝐴) ⊆ I )
Colors of variables: wff setvar class
Syntax hints:  wb 205  wss 3940   I cid 5563   E cep 5569  ccnv 5665  cres 5668  Rel wrel 5671  ccoss 37499   Disj wdisjALTV 37533   ElDisj weldisj 37535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-coss 37737  df-cnvrefrel 37853  df-disjALTV 38031  df-eldisj 38033
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator