Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj3 Structured version   Visualization version   GIF version

Theorem eqvreldisj3 38791
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8745). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
eqvreldisj3 ( EqvRel 𝑅 → Disj ( E ↾ (𝐴 / 𝑅)))

Proof of Theorem eqvreldisj3
StepHypRef Expression
1 eqvreldisj2 38790 . 2 ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅))
2 df-eldisj 38672 . 2 ( ElDisj (𝐴 / 𝑅) ↔ Disj ( E ↾ (𝐴 / 𝑅)))
31, 2sylib 218 1 ( EqvRel 𝑅 → Disj ( E ↾ (𝐴 / 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5530  ccnv 5630  cres 5633   / cqs 8647   EqvRel weqvrel 38159   Disj wdisjALTV 38176   ElDisj weldisj 38178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-eprel 5531  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ec 8650  df-qs 8654  df-coss 38375  df-refrel 38476  df-cnvrefrel 38491  df-symrel 38508  df-trrel 38538  df-eqvrel 38549  df-disjALTV 38670  df-eldisj 38672
This theorem is referenced by:  eqvreldisj4  38792  eqvreldisj5  38793  eqvrelqseqdisj3  38796
  Copyright terms: Public domain W3C validator