Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvreldisj3 Structured version   Visualization version   GIF version

Theorem eqvreldisj3 37691
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8788). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.)
Assertion
Ref Expression
eqvreldisj3 ( EqvRel 𝑅 → Disj ( E ↾ (𝐴 / 𝑅)))

Proof of Theorem eqvreldisj3
StepHypRef Expression
1 eqvreldisj2 37690 . 2 ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅))
2 df-eldisj 37572 . 2 ( ElDisj (𝐴 / 𝑅) ↔ Disj ( E ↾ (𝐴 / 𝑅)))
31, 2sylib 217 1 ( EqvRel 𝑅 → Disj ( E ↾ (𝐴 / 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   E cep 5579  ccnv 5675  cres 5678   / cqs 8701   EqvRel weqvrel 37055   Disj wdisjALTV 37072   ElDisj weldisj 37074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-id 5574  df-eprel 5580  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-ec 8704  df-qs 8708  df-coss 37276  df-refrel 37377  df-cnvrefrel 37392  df-symrel 37409  df-trrel 37439  df-eqvrel 37450  df-disjALTV 37570  df-eldisj 37572
This theorem is referenced by:  eqvreldisj4  37692  eqvreldisj5  37693  eqvrelqseqdisj3  37696
  Copyright terms: Public domain W3C validator