![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj3 | Structured version Visualization version GIF version |
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8788). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
eqvreldisj3 | ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj2 37690 | . 2 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | |
2 | df-eldisj 37572 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ Disj (◡ E ↾ (𝐴 / 𝑅))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 E cep 5579 ◡ccnv 5675 ↾ cres 5678 / cqs 8701 EqvRel weqvrel 37055 Disj wdisjALTV 37072 ElDisj weldisj 37074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-id 5574 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ec 8704 df-qs 8708 df-coss 37276 df-refrel 37377 df-cnvrefrel 37392 df-symrel 37409 df-trrel 37439 df-eqvrel 37450 df-disjALTV 37570 df-eldisj 37572 |
This theorem is referenced by: eqvreldisj4 37692 eqvreldisj5 37693 eqvrelqseqdisj3 37696 |
Copyright terms: Public domain | W3C validator |