| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj3 | Structured version Visualization version GIF version | ||
| Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8745). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvreldisj3 | ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj2 38790 | . 2 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | |
| 2 | df-eldisj 38672 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ Disj (◡ E ↾ (𝐴 / 𝑅))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 E cep 5530 ◡ccnv 5630 ↾ cres 5633 / cqs 8647 EqvRel weqvrel 38159 Disj wdisjALTV 38176 ElDisj weldisj 38178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-id 5526 df-eprel 5531 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ec 8650 df-qs 8654 df-coss 38375 df-refrel 38476 df-cnvrefrel 38491 df-symrel 38508 df-trrel 38538 df-eqvrel 38549 df-disjALTV 38670 df-eldisj 38672 |
| This theorem is referenced by: eqvreldisj4 38792 eqvreldisj5 38793 eqvrelqseqdisj3 38796 |
| Copyright terms: Public domain | W3C validator |