![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj3 | Structured version Visualization version GIF version |
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8803). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
eqvreldisj3 | ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj2 38221 | . 2 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | |
2 | df-eldisj 38103 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ Disj (◡ E ↾ (𝐴 / 𝑅))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 E cep 5575 ◡ccnv 5671 ↾ cres 5674 / cqs 8715 EqvRel weqvrel 37587 Disj wdisjALTV 37604 ElDisj weldisj 37606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5143 df-opab 5205 df-id 5570 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ec 8718 df-qs 8722 df-coss 37807 df-refrel 37908 df-cnvrefrel 37923 df-symrel 37940 df-trrel 37970 df-eqvrel 37981 df-disjALTV 38101 df-eldisj 38103 |
This theorem is referenced by: eqvreldisj4 38223 eqvreldisj5 38224 eqvrelqseqdisj3 38227 |
Copyright terms: Public domain | W3C validator |