| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj3 | Structured version Visualization version GIF version | ||
| Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8803). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
| Ref | Expression |
|---|---|
| eqvreldisj3 | ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqvreldisj2 38764 | . 2 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | |
| 2 | df-eldisj 38646 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ Disj (◡ E ↾ (𝐴 / 𝑅))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 E cep 5549 ◡ccnv 5650 ↾ cres 5653 / cqs 8712 EqvRel weqvrel 38137 Disj wdisjALTV 38154 ElDisj weldisj 38156 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rmo 3357 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-br 5117 df-opab 5179 df-id 5545 df-eprel 5550 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-ec 8715 df-qs 8719 df-coss 38350 df-refrel 38451 df-cnvrefrel 38466 df-symrel 38483 df-trrel 38513 df-eqvrel 38524 df-disjALTV 38644 df-eldisj 38646 |
| This theorem is referenced by: eqvreldisj4 38766 eqvreldisj5 38767 eqvrelqseqdisj3 38770 |
| Copyright terms: Public domain | W3C validator |