Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvreldisj3 | Structured version Visualization version GIF version |
Description: The elements of the quotient set of an equivalence relation are disjoint (cf. qsdisj2 8615). (Contributed by Mario Carneiro, 10-Dec-2016.) (Revised by Peter Mazsa, 20-Jun-2019.) (Revised by Peter Mazsa, 19-Sep-2021.) |
Ref | Expression |
---|---|
eqvreldisj3 | ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqvreldisj2 37045 | . 2 ⊢ ( EqvRel 𝑅 → ElDisj (𝐴 / 𝑅)) | |
2 | df-eldisj 36927 | . 2 ⊢ ( ElDisj (𝐴 / 𝑅) ↔ Disj (◡ E ↾ (𝐴 / 𝑅))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ ( EqvRel 𝑅 → Disj (◡ E ↾ (𝐴 / 𝑅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 E cep 5505 ◡ccnv 5599 ↾ cres 5602 / cqs 8528 EqvRel weqvrel 36404 Disj wdisjALTV 36421 ElDisj weldisj 36423 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3339 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-br 5082 df-opab 5144 df-id 5500 df-eprel 5506 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-ec 8531 df-qs 8535 df-coss 36631 df-refrel 36732 df-cnvrefrel 36747 df-symrel 36764 df-trrel 36794 df-eqvrel 36805 df-disjALTV 36925 df-eldisj 36927 |
This theorem is referenced by: eqvreldisj4 37047 eqvreldisj5 37048 eqvrelqseqdisj3 37051 |
Copyright terms: Public domain | W3C validator |