![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnsuc | Structured version Visualization version GIF version |
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
nnsuc | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnlim 7866 | . . . 4 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) | |
2 | 1 | adantr 482 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴) |
3 | nnord 7860 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
4 | orduninsuc 7829 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
5 | 4 | adantr 482 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
6 | df-lim 6367 | . . . . . . 7 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
7 | 6 | biimpri 227 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
8 | 7 | 3expia 1122 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 → Lim 𝐴)) |
9 | 5, 8 | sylbird 260 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
10 | 3, 9 | sylan 581 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
11 | 2, 10 | mt3d 148 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
12 | eleq1 2822 | . . . . . . . 8 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
13 | 12 | biimpcd 248 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω)) |
14 | peano2b 7869 | . . . . . . 7 ⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω) | |
15 | 13, 14 | syl6ibr 252 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → 𝑥 ∈ ω)) |
16 | 15 | ancrd 553 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
17 | 16 | adantld 492 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
18 | 17 | reximdv2 3165 | . . 3 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
19 | 18 | adantr 482 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
20 | 11, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 ∃wrex 3071 ∅c0 4322 ∪ cuni 4908 Ord word 6361 Oncon0 6362 Lim wlim 6363 suc csuc 6364 ωcom 7852 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-om 7853 |
This theorem is referenced by: peano5 7881 peano5OLD 7882 nn0suc 7883 inf3lemd 9619 infpssrlem4 10298 fin1a2lem6 10397 bnj158 33729 bnj1098 33783 bnj594 33912 gonar 34375 goalr 34377 satffun 34389 |
Copyright terms: Public domain | W3C validator |