MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsuc Structured version   Visualization version   GIF version

Theorem nnsuc 7718
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnsuc
StepHypRef Expression
1 nnlim 7714 . . . 4 (𝐴 ∈ ω → ¬ Lim 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴)
3 nnord 7708 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
4 orduninsuc 7678 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
54adantr 480 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 df-lim 6268 . . . . . . 7 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 227 . . . . . 6 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
873expia 1119 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 → Lim 𝐴))
95, 8sylbird 259 . . . 4 ((Ord 𝐴𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
103, 9sylan 579 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
112, 10mt3d 148 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
12 eleq1 2827 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1312biimpcd 248 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω))
14 peano2b 7717 . . . . . . 7 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
1513, 14syl6ibr 251 . . . . . 6 (𝐴 ∈ ω → (𝐴 = suc 𝑥𝑥 ∈ ω))
1615ancrd 551 . . . . 5 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1716adantld 490 . . . 4 (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1817reximdv2 3200 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1918adantr 480 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2011, 19mpd 15 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wrex 3066  c0 4261   cuni 4844  Ord word 6262  Oncon0 6263  Lim wlim 6264  suc csuc 6265  ωcom 7700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-tr 5196  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-om 7701
This theorem is referenced by:  peano5  7727  peano5OLD  7728  nn0suc  7729  inf3lemd  9346  infpssrlem4  10046  fin1a2lem6  10145  bnj158  32687  bnj1098  32742  bnj594  32871  gonar  33336  goalr  33338  satffun  33350
  Copyright terms: Public domain W3C validator