MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsuc Structured version   Visualization version   GIF version

Theorem nnsuc 7884
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnsuc
StepHypRef Expression
1 nnlim 7880 . . . 4 (𝐴 ∈ ω → ¬ Lim 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴)
3 nnord 7874 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
4 orduninsuc 7843 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
54adantr 480 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 df-lim 6362 . . . . . . 7 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 228 . . . . . 6 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
873expia 1121 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 → Lim 𝐴))
95, 8sylbird 260 . . . 4 ((Ord 𝐴𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
103, 9sylan 580 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
112, 10mt3d 148 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
12 eleq1 2823 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1312biimpcd 249 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω))
14 peano2b 7883 . . . . . . 7 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
1513, 14imbitrrdi 252 . . . . . 6 (𝐴 ∈ ω → (𝐴 = suc 𝑥𝑥 ∈ ω))
1615ancrd 551 . . . . 5 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1716adantld 490 . . . 4 (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1817reximdv2 3151 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1918adantr 480 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2011, 19mpd 15 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  c0 4313   cuni 4888  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359  ωcom 7866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-om 7867
This theorem is referenced by:  peano5  7894  nn0suc  7895  inf3lemd  9646  infpssrlem4  10325  fin1a2lem6  10424  bnj158  34765  bnj1098  34819  bnj594  34948  gonar  35422  goalr  35424  satffun  35436
  Copyright terms: Public domain W3C validator