MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsuc Structured version   Visualization version   GIF version

Theorem nnsuc 7905
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnsuc
StepHypRef Expression
1 nnlim 7901 . . . 4 (𝐴 ∈ ω → ¬ Lim 𝐴)
21adantr 480 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴)
3 nnord 7895 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
4 orduninsuc 7864 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
54adantr 480 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 df-lim 6391 . . . . . . 7 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 228 . . . . . 6 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
873expia 1120 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 → Lim 𝐴))
95, 8sylbird 260 . . . 4 ((Ord 𝐴𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
103, 9sylan 580 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
112, 10mt3d 148 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
12 eleq1 2827 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1312biimpcd 249 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω))
14 peano2b 7904 . . . . . . 7 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
1513, 14imbitrrdi 252 . . . . . 6 (𝐴 ∈ ω → (𝐴 = suc 𝑥𝑥 ∈ ω))
1615ancrd 551 . . . . 5 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1716adantld 490 . . . 4 (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1817reximdv2 3162 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1918adantr 480 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2011, 19mpd 15 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wrex 3068  c0 4339   cuni 4912  Ord word 6385  Oncon0 6386  Lim wlim 6387  suc csuc 6388  ωcom 7887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-om 7888
This theorem is referenced by:  peano5  7916  nn0suc  7917  inf3lemd  9665  infpssrlem4  10344  fin1a2lem6  10443  bnj158  34722  bnj1098  34776  bnj594  34905  gonar  35380  goalr  35382  satffun  35394
  Copyright terms: Public domain W3C validator