Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnsuc | Structured version Visualization version GIF version |
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
nnsuc | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnlim 7592 | . . . 4 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) | |
2 | 1 | adantr 484 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴) |
3 | nnord 7587 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
4 | orduninsuc 7557 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
5 | 4 | adantr 484 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
6 | df-lim 6174 | . . . . . . 7 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
7 | 6 | biimpri 231 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
8 | 7 | 3expia 1118 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 → Lim 𝐴)) |
9 | 5, 8 | sylbird 263 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
10 | 3, 9 | sylan 583 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
11 | 2, 10 | mt3d 150 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
12 | eleq1 2839 | . . . . . . . 8 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
13 | 12 | biimpcd 252 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω)) |
14 | peano2b 7595 | . . . . . . 7 ⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω) | |
15 | 13, 14 | syl6ibr 255 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → 𝑥 ∈ ω)) |
16 | 15 | ancrd 555 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
17 | 16 | adantld 494 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
18 | 17 | reximdv2 3195 | . . 3 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
19 | 18 | adantr 484 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
20 | 11, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∃wrex 3071 ∅c0 4225 ∪ cuni 4798 Ord word 6168 Oncon0 6169 Lim wlim 6170 suc csuc 6171 ωcom 7579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-om 7580 |
This theorem is referenced by: peano5 7604 nn0suc 7605 inf3lemd 9123 infpssrlem4 9766 fin1a2lem6 9865 bnj158 32227 bnj1098 32283 bnj594 32412 gonar 32873 goalr 32875 satffun 32887 |
Copyright terms: Public domain | W3C validator |