MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnsuc Structured version   Visualization version   GIF version

Theorem nnsuc 7873
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.)
Assertion
Ref Expression
nnsuc ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem nnsuc
StepHypRef Expression
1 nnlim 7869 . . . 4 (𝐴 ∈ ω → ¬ Lim 𝐴)
21adantr 482 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴)
3 nnord 7863 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
4 orduninsuc 7832 . . . . . 6 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
54adantr 482 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
6 df-lim 6370 . . . . . . 7 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 227 . . . . . 6 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
873expia 1122 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅) → (𝐴 = 𝐴 → Lim 𝐴))
95, 8sylbird 260 . . . 4 ((Ord 𝐴𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
103, 9sylan 581 . . 3 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴))
112, 10mt3d 148 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥)
12 eleq1 2822 . . . . . . . 8 (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω))
1312biimpcd 248 . . . . . . 7 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω))
14 peano2b 7872 . . . . . . 7 (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω)
1513, 14imbitrrdi 251 . . . . . 6 (𝐴 ∈ ω → (𝐴 = suc 𝑥𝑥 ∈ ω))
1615ancrd 553 . . . . 5 (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1716adantld 492 . . . 4 (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥)))
1817reximdv2 3165 . . 3 (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
1918adantr 482 . 2 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥))
2011, 19mpd 15 1 ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  wrex 3071  c0 4323   cuni 4909  Ord word 6364  Oncon0 6365  Lim wlim 6366  suc csuc 6367  ωcom 7855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-tr 5267  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-om 7856
This theorem is referenced by:  peano5  7884  peano5OLD  7885  nn0suc  7886  inf3lemd  9622  infpssrlem4  10301  fin1a2lem6  10400  bnj158  33740  bnj1098  33794  bnj594  33923  gonar  34386  goalr  34388  satffun  34400
  Copyright terms: Public domain W3C validator