Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nnsuc | Structured version Visualization version GIF version |
Description: A nonzero natural number is a successor. (Contributed by NM, 18-Feb-2004.) |
Ref | Expression |
---|---|
nnsuc | ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnlim 7714 | . . . 4 ⊢ (𝐴 ∈ ω → ¬ Lim 𝐴) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ¬ Lim 𝐴) |
3 | nnord 7708 | . . . 4 ⊢ (𝐴 ∈ ω → Ord 𝐴) | |
4 | orduninsuc 7678 | . . . . . 6 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
5 | 4 | adantr 480 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) |
6 | df-lim 6268 | . . . . . . 7 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
7 | 6 | biimpri 227 | . . . . . 6 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
8 | 7 | 3expia 1119 | . . . . 5 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (𝐴 = ∪ 𝐴 → Lim 𝐴)) |
9 | 5, 8 | sylbird 259 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
10 | 3, 9 | sylan 579 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 → Lim 𝐴)) |
11 | 2, 10 | mt3d 148 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ On 𝐴 = suc 𝑥) |
12 | eleq1 2827 | . . . . . . . 8 ⊢ (𝐴 = suc 𝑥 → (𝐴 ∈ ω ↔ suc 𝑥 ∈ ω)) | |
13 | 12 | biimpcd 248 | . . . . . . 7 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → suc 𝑥 ∈ ω)) |
14 | peano2b 7717 | . . . . . . 7 ⊢ (𝑥 ∈ ω ↔ suc 𝑥 ∈ ω) | |
15 | 13, 14 | syl6ibr 251 | . . . . . 6 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → 𝑥 ∈ ω)) |
16 | 15 | ancrd 551 | . . . . 5 ⊢ (𝐴 ∈ ω → (𝐴 = suc 𝑥 → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
17 | 16 | adantld 490 | . . . 4 ⊢ (𝐴 ∈ ω → ((𝑥 ∈ On ∧ 𝐴 = suc 𝑥) → (𝑥 ∈ ω ∧ 𝐴 = suc 𝑥))) |
18 | 17 | reximdv2 3200 | . . 3 ⊢ (𝐴 ∈ ω → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
19 | 18 | adantr 480 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → (∃𝑥 ∈ On 𝐴 = suc 𝑥 → ∃𝑥 ∈ ω 𝐴 = suc 𝑥)) |
20 | 11, 19 | mpd 15 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ ω 𝐴 = suc 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ≠ wne 2944 ∃wrex 3066 ∅c0 4261 ∪ cuni 4844 Ord word 6262 Oncon0 6263 Lim wlim 6264 suc csuc 6265 ωcom 7700 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-11 2157 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-tr 5196 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-om 7701 |
This theorem is referenced by: peano5 7727 peano5OLD 7728 nn0suc 7729 inf3lemd 9346 infpssrlem4 10046 fin1a2lem6 10145 bnj158 32687 bnj1098 32742 bnj594 32871 gonar 33336 goalr 33338 satffun 33350 |
Copyright terms: Public domain | W3C validator |