![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6372 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 3004 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4920 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2749 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1437 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 6370 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 6370 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ≠ wne 2941 ∅c0 4323 ∪ cuni 4909 Ord word 6364 Lim wlim 6366 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-v 3477 df-in 3956 df-ss 3966 df-uni 4910 df-tr 5267 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-ord 6368 df-lim 6370 |
This theorem is referenced by: limuni2 6427 0ellim 6428 limuni3 7841 tfinds2 7853 dfom2 7857 limomss 7860 nnlim 7869 limom 7871 ssnlim 7875 onfununi 8341 tfr1a 8394 tz7.44lem1 8405 tz7.44-2 8407 tz7.44-3 8408 1ellim 8498 2ellim 8499 oeeulem 8601 limensuc 9154 elom3 9643 r1funlim 9761 rankxplim2 9875 rankxplim3 9876 rankxpsuc 9877 infxpenlem 10008 alephislim 10078 cflim2 10258 winalim 10690 rankcf 10772 gruina 10813 scutbdaybnd2lim 27318 rdgprc0 34765 dfrdg2 34767 dfrdg4 34923 limsucncmpi 35330 limsucncmp 35331 omlimcl2 41991 onexlimgt 41992 onov0suclim 42024 succlg 42078 dflim5 42079 nlim1NEW 42193 nlim2NEW 42194 nlim3 42195 nlim4 42196 dfsucon 42274 |
Copyright terms: Public domain | W3C validator |