MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 6293
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 6288 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 3004 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4855 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2752 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1436 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 6286 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 6286 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  w3a 1087   = wceq 1539  wne 2941  c0 4262   cuni 4844  Ord word 6280  Lim wlim 6282
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-3an 1089  df-tru 1542  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2942  df-ral 3063  df-v 3439  df-in 3899  df-ss 3909  df-uni 4845  df-tr 5199  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-ord 6284  df-lim 6286
This theorem is referenced by:  limuni2  6342  0ellim  6343  limuni3  7731  tfinds2  7742  dfom2  7746  limomss  7749  nnlim  7758  limom  7760  ssnlim  7764  onfununi  8203  tfr1a  8256  tz7.44lem1  8267  tz7.44-2  8269  tz7.44-3  8270  1ellim  8359  2ellim  8360  oeeulem  8463  limensuc  8979  elom3  9454  r1funlim  9572  rankxplim2  9686  rankxplim3  9687  rankxpsuc  9688  infxpenlem  9819  alephislim  9889  cflim2  10069  winalim  10501  rankcf  10583  gruina  10624  rdgprc0  33818  dfrdg2  33820  scutbdaybnd2lim  34060  dfrdg4  34302  limsucncmpi  34683  limsucncmp  34684  nlim1NEW  41262  nlim2NEW  41263  nlim3  41264  nlim4  41265  dfsucon  41343
  Copyright terms: Public domain W3C validator