| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6339 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
| 2 | neeq1 2987 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 4 | unieq 4882 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 5 | 3, 4 | eqeq12d 2745 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3anbi123d 1438 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
| 7 | df-lim 6337 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 8 | df-lim 6337 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ≠ wne 2925 ∅c0 4296 ∪ cuni 4871 Ord word 6331 Lim wlim 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-ord 6335 df-lim 6337 |
| This theorem is referenced by: limuni2 6395 limuni3 7828 tfinds2 7840 dfom2 7844 limomss 7847 nnlim 7856 limom 7858 ssnlim 7862 onfununi 8310 tfr1a 8362 tz7.44lem1 8373 tz7.44-2 8375 tz7.44-3 8376 1ellim 8462 2ellim 8463 oeeulem 8565 limensuc 9118 elom3 9601 r1funlim 9719 rankxplim2 9833 rankxplim3 9834 rankxpsuc 9835 infxpenlem 9966 alephislim 10036 cflim2 10216 winalim 10648 rankcf 10730 gruina 10771 scutbdaybnd2lim 27729 rdgprc0 35781 dfrdg2 35783 dfrdg4 35939 limsucncmpi 36433 limsucncmp 36434 omlimcl2 43231 onexlimgt 43232 onov0suclim 43263 succlg 43317 dflim5 43318 nlim1NEW 43431 nlim2NEW 43432 nlim3 43433 nlim4 43434 dfsucon 43512 |
| Copyright terms: Public domain | W3C validator |