MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 6318
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 6313 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 2990 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4867 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2747 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1438 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 6311 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 6311 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wne 2928  c0 4280   cuni 4856  Ord word 6305  Lim wlim 6307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-v 3438  df-ss 3914  df-uni 4857  df-tr 5197  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-ord 6309  df-lim 6311
This theorem is referenced by:  limuni2  6369  limuni3  7782  tfinds2  7794  dfom2  7798  limomss  7801  nnlim  7810  limom  7812  ssnlim  7816  onfununi  8261  tfr1a  8313  tz7.44lem1  8324  tz7.44-2  8326  tz7.44-3  8327  1ellim  8413  2ellim  8414  oeeulem  8516  limensuc  9067  elom3  9538  r1funlim  9659  rankxplim2  9773  rankxplim3  9774  rankxpsuc  9775  infxpenlem  9904  alephislim  9974  cflim2  10154  winalim  10586  rankcf  10668  gruina  10709  scutbdaybnd2lim  27758  rdgprc0  35835  dfrdg2  35837  dfrdg4  35993  limsucncmpi  36487  limsucncmp  36488  omlimcl2  43283  onexlimgt  43284  onov0suclim  43315  succlg  43369  dflim5  43370  nlim1NEW  43483  nlim2NEW  43484  nlim3  43485  nlim4  43486  dfsucon  43564
  Copyright terms: Public domain W3C validator