| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6327 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
| 2 | neeq1 2987 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 4 | unieq 4878 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 5 | 3, 4 | eqeq12d 2745 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3anbi123d 1438 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
| 7 | df-lim 6325 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 8 | df-lim 6325 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ≠ wne 2925 ∅c0 4292 ∪ cuni 4867 Ord word 6319 Lim wlim 6321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-lim 6325 |
| This theorem is referenced by: limuni2 6383 limuni3 7808 tfinds2 7820 dfom2 7824 limomss 7827 nnlim 7836 limom 7838 ssnlim 7842 onfununi 8287 tfr1a 8339 tz7.44lem1 8350 tz7.44-2 8352 tz7.44-3 8353 1ellim 8439 2ellim 8440 oeeulem 8542 limensuc 9095 elom3 9577 r1funlim 9695 rankxplim2 9809 rankxplim3 9810 rankxpsuc 9811 infxpenlem 9942 alephislim 10012 cflim2 10192 winalim 10624 rankcf 10706 gruina 10747 scutbdaybnd2lim 27705 rdgprc0 35754 dfrdg2 35756 dfrdg4 35912 limsucncmpi 36406 limsucncmp 36407 omlimcl2 43204 onexlimgt 43205 onov0suclim 43236 succlg 43290 dflim5 43291 nlim1NEW 43404 nlim2NEW 43405 nlim3 43406 nlim4 43407 dfsucon 43485 |
| Copyright terms: Public domain | W3C validator |