| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6314 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
| 2 | neeq1 2987 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 4 | unieq 4869 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 5 | 3, 4 | eqeq12d 2745 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3anbi123d 1438 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
| 7 | df-lim 6312 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 8 | df-lim 6312 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ≠ wne 2925 ∅c0 4284 ∪ cuni 4858 Ord word 6306 Lim wlim 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3438 df-ss 3920 df-uni 4859 df-tr 5200 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6310 df-lim 6312 |
| This theorem is referenced by: limuni2 6370 limuni3 7785 tfinds2 7797 dfom2 7801 limomss 7804 nnlim 7813 limom 7815 ssnlim 7819 onfununi 8264 tfr1a 8316 tz7.44lem1 8327 tz7.44-2 8329 tz7.44-3 8330 1ellim 8416 2ellim 8417 oeeulem 8519 limensuc 9071 elom3 9544 r1funlim 9662 rankxplim2 9776 rankxplim3 9777 rankxpsuc 9778 infxpenlem 9907 alephislim 9977 cflim2 10157 winalim 10589 rankcf 10671 gruina 10712 scutbdaybnd2lim 27728 rdgprc0 35767 dfrdg2 35769 dfrdg4 35925 limsucncmpi 36419 limsucncmp 36420 omlimcl2 43215 onexlimgt 43216 onov0suclim 43247 succlg 43301 dflim5 43302 nlim1NEW 43415 nlim2NEW 43416 nlim3 43417 nlim4 43418 dfsucon 43496 |
| Copyright terms: Public domain | W3C validator |