![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6402 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 3009 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4942 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2756 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1436 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 6400 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 6400 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1537 ≠ wne 2946 ∅c0 4352 ∪ cuni 4931 Ord word 6394 Lim wlim 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-lim 6400 |
This theorem is referenced by: limuni2 6457 0ellim 6458 limuni3 7889 tfinds2 7901 dfom2 7905 limomss 7908 nnlim 7917 limom 7919 ssnlim 7923 onfununi 8397 tfr1a 8450 tz7.44lem1 8461 tz7.44-2 8463 tz7.44-3 8464 1ellim 8554 2ellim 8555 oeeulem 8657 limensuc 9220 elom3 9717 r1funlim 9835 rankxplim2 9949 rankxplim3 9950 rankxpsuc 9951 infxpenlem 10082 alephislim 10152 cflim2 10332 winalim 10764 rankcf 10846 gruina 10887 scutbdaybnd2lim 27880 rdgprc0 35757 dfrdg2 35759 dfrdg4 35915 limsucncmpi 36411 limsucncmp 36412 omlimcl2 43203 onexlimgt 43204 onov0suclim 43236 succlg 43290 dflim5 43291 nlim1NEW 43404 nlim2NEW 43405 nlim3 43406 nlim4 43407 dfsucon 43485 |
Copyright terms: Public domain | W3C validator |