![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6370 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 2998 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4914 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2743 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1433 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 6368 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 6368 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1534 ≠ wne 2935 ∅c0 4318 ∪ cuni 4903 Ord word 6362 Lim wlim 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-ne 2936 df-ral 3057 df-v 3471 df-in 3951 df-ss 3961 df-uni 4904 df-tr 5260 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-ord 6366 df-lim 6368 |
This theorem is referenced by: limuni2 6425 0ellim 6426 limuni3 7850 tfinds2 7862 dfom2 7866 limomss 7869 nnlim 7878 limom 7880 ssnlim 7884 onfununi 8355 tfr1a 8408 tz7.44lem1 8419 tz7.44-2 8421 tz7.44-3 8422 1ellim 8512 2ellim 8513 oeeulem 8615 limensuc 9170 elom3 9663 r1funlim 9781 rankxplim2 9895 rankxplim3 9896 rankxpsuc 9897 infxpenlem 10028 alephislim 10098 cflim2 10278 winalim 10710 rankcf 10792 gruina 10833 scutbdaybnd2lim 27737 rdgprc0 35325 dfrdg2 35327 dfrdg4 35483 limsucncmpi 35865 limsucncmp 35866 omlimcl2 42593 onexlimgt 42594 onov0suclim 42626 succlg 42680 dflim5 42681 nlim1NEW 42795 nlim2NEW 42796 nlim3 42797 nlim4 42798 dfsucon 42876 |
Copyright terms: Public domain | W3C validator |