MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 6332
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 6327 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 2987 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4878 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2745 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1438 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 6325 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 6325 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wne 2925  c0 4292   cuni 4867  Ord word 6319  Lim wlim 6321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-v 3446  df-ss 3928  df-uni 4868  df-tr 5210  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-lim 6325
This theorem is referenced by:  limuni2  6383  limuni3  7808  tfinds2  7820  dfom2  7824  limomss  7827  nnlim  7836  limom  7838  ssnlim  7842  onfununi  8287  tfr1a  8339  tz7.44lem1  8350  tz7.44-2  8352  tz7.44-3  8353  1ellim  8439  2ellim  8440  oeeulem  8542  limensuc  9095  elom3  9577  r1funlim  9695  rankxplim2  9809  rankxplim3  9810  rankxpsuc  9811  infxpenlem  9942  alephislim  10012  cflim2  10192  winalim  10624  rankcf  10706  gruina  10747  scutbdaybnd2lim  27705  rdgprc0  35754  dfrdg2  35756  dfrdg4  35912  limsucncmpi  36406  limsucncmp  36407  omlimcl2  43204  onexlimgt  43205  onov0suclim  43236  succlg  43290  dflim5  43291  nlim1NEW  43404  nlim2NEW  43405  nlim3  43406  nlim4  43407  dfsucon  43485
  Copyright terms: Public domain W3C validator