MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 6319
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 6314 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 2987 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4869 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2745 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1438 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 6312 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 6312 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wne 2925  c0 4284   cuni 4858  Ord word 6306  Lim wlim 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-v 3438  df-ss 3920  df-uni 4859  df-tr 5200  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-ord 6310  df-lim 6312
This theorem is referenced by:  limuni2  6370  limuni3  7785  tfinds2  7797  dfom2  7801  limomss  7804  nnlim  7813  limom  7815  ssnlim  7819  onfununi  8264  tfr1a  8316  tz7.44lem1  8327  tz7.44-2  8329  tz7.44-3  8330  1ellim  8416  2ellim  8417  oeeulem  8519  limensuc  9071  elom3  9544  r1funlim  9662  rankxplim2  9776  rankxplim3  9777  rankxpsuc  9778  infxpenlem  9907  alephislim  9977  cflim2  10157  winalim  10589  rankcf  10671  gruina  10712  scutbdaybnd2lim  27728  rdgprc0  35767  dfrdg2  35769  dfrdg4  35925  limsucncmpi  36419  limsucncmp  36420  omlimcl2  43215  onexlimgt  43216  onov0suclim  43247  succlg  43301  dflim5  43302  nlim1NEW  43415  nlim2NEW  43416  nlim3  43417  nlim4  43418  dfsucon  43496
  Copyright terms: Public domain W3C validator