![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 5874 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 3005 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4583 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2786 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1547 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 5872 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 5872 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 303 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ w3a 1071 = wceq 1631 ≠ wne 2943 ∅c0 4064 ∪ cuni 4575 Ord word 5866 Lim wlim 5868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 829 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-ral 3066 df-rex 3067 df-in 3731 df-ss 3738 df-uni 4576 df-tr 4888 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-ord 5870 df-lim 5872 |
This theorem is referenced by: limuni2 5930 0ellim 5931 limuni3 7200 tfinds2 7211 dfom2 7215 limomss 7218 nnlim 7226 limom 7228 ssnlim 7231 onfununi 7592 tfr1a 7644 tz7.44lem1 7655 tz7.44-2 7657 tz7.44-3 7658 oeeulem 7836 limensuc 8294 elom3 8710 r1funlim 8794 rankxplim2 8908 rankxplim3 8909 rankxpsuc 8910 infxpenlem 9037 alephislim 9107 cflim2 9288 winalim 9720 rankcf 9802 gruina 9843 rdgprc0 32036 dfrdg2 32038 dfrdg4 32396 limsucncmpi 32782 limsucncmp 32783 |
Copyright terms: Public domain | W3C validator |