MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 6407
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 6402 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 3009 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4942 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2756 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1436 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 6400 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 6400 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1087   = wceq 1537  wne 2946  c0 4352   cuni 4931  Ord word 6394  Lim wlim 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1089  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-lim 6400
This theorem is referenced by:  limuni2  6457  0ellim  6458  limuni3  7889  tfinds2  7901  dfom2  7905  limomss  7908  nnlim  7917  limom  7919  ssnlim  7923  onfununi  8397  tfr1a  8450  tz7.44lem1  8461  tz7.44-2  8463  tz7.44-3  8464  1ellim  8554  2ellim  8555  oeeulem  8657  limensuc  9220  elom3  9717  r1funlim  9835  rankxplim2  9949  rankxplim3  9950  rankxpsuc  9951  infxpenlem  10082  alephislim  10152  cflim2  10332  winalim  10764  rankcf  10846  gruina  10887  scutbdaybnd2lim  27880  rdgprc0  35757  dfrdg2  35759  dfrdg4  35915  limsucncmpi  36411  limsucncmp  36412  omlimcl2  43203  onexlimgt  43204  onov0suclim  43236  succlg  43290  dflim5  43291  nlim1NEW  43404  nlim2NEW  43405  nlim3  43406  nlim4  43407  dfsucon  43485
  Copyright terms: Public domain W3C validator