| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
| Ref | Expression |
|---|---|
| limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordeq 6359 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
| 2 | neeq1 2994 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
| 3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 4 | unieq 4894 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 5 | 3, 4 | eqeq12d 2751 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
| 6 | 1, 2, 5 | 3anbi123d 1438 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
| 7 | df-lim 6357 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 8 | df-lim 6357 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ≠ wne 2932 ∅c0 4308 ∪ cuni 4883 Ord word 6351 Lim wlim 6353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-v 3461 df-ss 3943 df-uni 4884 df-tr 5230 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-lim 6357 |
| This theorem is referenced by: limuni2 6415 0ellim 6416 limuni3 7845 tfinds2 7857 dfom2 7861 limomss 7864 nnlim 7873 limom 7875 ssnlim 7879 onfununi 8353 tfr1a 8406 tz7.44lem1 8417 tz7.44-2 8419 tz7.44-3 8420 1ellim 8508 2ellim 8509 oeeulem 8611 limensuc 9166 elom3 9660 r1funlim 9778 rankxplim2 9892 rankxplim3 9893 rankxpsuc 9894 infxpenlem 10025 alephislim 10095 cflim2 10275 winalim 10707 rankcf 10789 gruina 10830 scutbdaybnd2lim 27779 rdgprc0 35757 dfrdg2 35759 dfrdg4 35915 limsucncmpi 36409 limsucncmp 36410 omlimcl2 43213 onexlimgt 43214 onov0suclim 43245 succlg 43299 dflim5 43300 nlim1NEW 43413 nlim2NEW 43414 nlim3 43415 nlim4 43416 dfsucon 43494 |
| Copyright terms: Public domain | W3C validator |