![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6369 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 3004 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4919 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2749 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1437 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 6367 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 6367 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1088 = wceq 1542 ≠ wne 2941 ∅c0 4322 ∪ cuni 4908 Ord word 6361 Lim wlim 6363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1090 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-v 3477 df-in 3955 df-ss 3965 df-uni 4909 df-tr 5266 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6365 df-lim 6367 |
This theorem is referenced by: limuni2 6424 0ellim 6425 limuni3 7838 tfinds2 7850 dfom2 7854 limomss 7857 nnlim 7866 limom 7868 ssnlim 7872 onfununi 8338 tfr1a 8391 tz7.44lem1 8402 tz7.44-2 8404 tz7.44-3 8405 1ellim 8495 2ellim 8496 oeeulem 8598 limensuc 9151 elom3 9640 r1funlim 9758 rankxplim2 9872 rankxplim3 9873 rankxpsuc 9874 infxpenlem 10005 alephislim 10075 cflim2 10255 winalim 10687 rankcf 10769 gruina 10810 scutbdaybnd2lim 27308 rdgprc0 34754 dfrdg2 34756 dfrdg4 34912 limsucncmpi 35319 limsucncmp 35320 omlimcl2 41977 onexlimgt 41978 onov0suclim 42010 succlg 42064 dflim5 42065 nlim1NEW 42179 nlim2NEW 42180 nlim3 42181 nlim4 42182 dfsucon 42260 |
Copyright terms: Public domain | W3C validator |