Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6288 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 3004 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4855 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2752 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1436 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 6286 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 6286 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1087 = wceq 1539 ≠ wne 2941 ∅c0 4262 ∪ cuni 4844 Ord word 6280 Lim wlim 6282 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-3an 1089 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-ral 3063 df-v 3439 df-in 3899 df-ss 3909 df-uni 4845 df-tr 5199 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-lim 6286 |
This theorem is referenced by: limuni2 6342 0ellim 6343 limuni3 7731 tfinds2 7742 dfom2 7746 limomss 7749 nnlim 7758 limom 7760 ssnlim 7764 onfununi 8203 tfr1a 8256 tz7.44lem1 8267 tz7.44-2 8269 tz7.44-3 8270 1ellim 8359 2ellim 8360 oeeulem 8463 limensuc 8979 elom3 9454 r1funlim 9572 rankxplim2 9686 rankxplim3 9687 rankxpsuc 9688 infxpenlem 9819 alephislim 9889 cflim2 10069 winalim 10501 rankcf 10583 gruina 10624 rdgprc0 33818 dfrdg2 33820 scutbdaybnd2lim 34060 dfrdg4 34302 limsucncmpi 34683 limsucncmp 34684 nlim1NEW 41262 nlim2NEW 41263 nlim3 41264 nlim4 41265 dfsucon 41343 |
Copyright terms: Public domain | W3C validator |