MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limeq Structured version   Visualization version   GIF version

Theorem limeq 6344
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Assertion
Ref Expression
limeq (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))

Proof of Theorem limeq
StepHypRef Expression
1 ordeq 6339 . . 3 (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵))
2 neeq1 2987 . . 3 (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅))
3 id 22 . . . 4 (𝐴 = 𝐵𝐴 = 𝐵)
4 unieq 4882 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
53, 4eqeq12d 2745 . . 3 (𝐴 = 𝐵 → (𝐴 = 𝐴𝐵 = 𝐵))
61, 2, 53anbi123d 1438 . 2 (𝐴 = 𝐵 → ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵)))
7 df-lim 6337 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
8 df-lim 6337 . 2 (Lim 𝐵 ↔ (Ord 𝐵𝐵 ≠ ∅ ∧ 𝐵 = 𝐵))
96, 7, 83bitr4g 314 1 (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wne 2925  c0 4296   cuni 4871  Ord word 6331  Lim wlim 6333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-v 3449  df-ss 3931  df-uni 4872  df-tr 5215  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-lim 6337
This theorem is referenced by:  limuni2  6395  limuni3  7828  tfinds2  7840  dfom2  7844  limomss  7847  nnlim  7856  limom  7858  ssnlim  7862  onfununi  8310  tfr1a  8362  tz7.44lem1  8373  tz7.44-2  8375  tz7.44-3  8376  1ellim  8462  2ellim  8463  oeeulem  8565  limensuc  9118  elom3  9601  r1funlim  9719  rankxplim2  9833  rankxplim3  9834  rankxpsuc  9835  infxpenlem  9966  alephislim  10036  cflim2  10216  winalim  10648  rankcf  10730  gruina  10771  scutbdaybnd2lim  27729  rdgprc0  35781  dfrdg2  35783  dfrdg4  35939  limsucncmpi  36433  limsucncmp  36434  omlimcl2  43231  onexlimgt  43232  onov0suclim  43263  succlg  43317  dflim5  43318  nlim1NEW  43431  nlim2NEW  43432  nlim3  43433  nlim4  43434  dfsucon  43512
  Copyright terms: Public domain W3C validator