Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limeq | Structured version Visualization version GIF version |
Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
limeq | ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq 6173 | . . 3 ⊢ (𝐴 = 𝐵 → (Ord 𝐴 ↔ Ord 𝐵)) | |
2 | neeq1 2996 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅)) | |
3 | id 22 | . . . 4 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
4 | unieq 4804 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
5 | 3, 4 | eqeq12d 2754 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵)) |
6 | 1, 2, 5 | 3anbi123d 1437 | . 2 ⊢ (𝐴 = 𝐵 → ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵))) |
7 | df-lim 6171 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
8 | df-lim 6171 | . 2 ⊢ (Lim 𝐵 ↔ (Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵)) | |
9 | 6, 7, 8 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → (Lim 𝐴 ↔ Lim 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ w3a 1088 = wceq 1542 ≠ wne 2934 ∅c0 4209 ∪ cuni 4793 Ord word 6165 Lim wlim 6167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1090 df-tru 1545 df-ex 1787 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-ne 2935 df-ral 3058 df-v 3399 df-in 3848 df-ss 3858 df-uni 4794 df-tr 5134 df-po 5438 df-so 5439 df-fr 5478 df-we 5480 df-ord 6169 df-lim 6171 |
This theorem is referenced by: limuni2 6227 0ellim 6228 limuni3 7580 tfinds2 7591 dfom2 7595 limomss 7598 nnlim 7606 limom 7608 ssnlim 7612 onfununi 8000 tfr1a 8052 tz7.44lem1 8063 tz7.44-2 8065 tz7.44-3 8066 oeeulem 8251 limensuc 8737 elom3 9177 r1funlim 9261 rankxplim2 9375 rankxplim3 9376 rankxpsuc 9377 infxpenlem 9506 alephislim 9576 cflim2 9756 winalim 10188 rankcf 10270 gruina 10311 rdgprc0 33333 dfrdg2 33335 scutbdaybnd2lim 33644 dfrdg4 33883 limsucncmpi 34264 limsucncmp 34265 dfsucon 40668 |
Copyright terms: Public domain | W3C validator |