MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim1 Structured version   Visualization version   GIF version

Theorem nlim1 8404
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
nlim1 ¬ Lim 1o

Proof of Theorem nlim1
StepHypRef Expression
1 1n0 8403 . . . . . 6 1o ≠ ∅
2 0ex 5243 . . . . . . 7 ∅ ∈ V
32unisn 4875 . . . . . 6 {∅} = ∅
41, 3neeqtrri 3001 . . . . 5 1o {∅}
5 df1o2 8392 . . . . . 6 1o = {∅}
65unieqi 4868 . . . . 5 1o = {∅}
74, 6neeqtrri 3001 . . . 4 1o 1o
87neii 2930 . . 3 ¬ 1o = 1o
9 simp3 1138 . . 3 ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o) → 1o = 1o)
108, 9mto 197 . 2 ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o)
11 df-lim 6311 . 2 (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o))
1210, 11mtbir 323 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1541  wne 2928  c0 4280  {csn 4573   cuni 4856  Ord word 6305  Lim wlim 6307  1oc1o 8378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-nul 5242
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-sn 4574  df-pr 4576  df-uni 4857  df-lim 6311  df-suc 6312  df-1o 8385
This theorem is referenced by:  1ellim  8413  2ellim  8414
  Copyright terms: Public domain W3C validator