![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlim1 | Structured version Visualization version GIF version |
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
Ref | Expression |
---|---|
nlim1 | ⊢ ¬ Lim 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1n0 8544 | . . . . . 6 ⊢ 1o ≠ ∅ | |
2 | 0ex 5325 | . . . . . . 7 ⊢ ∅ ∈ V | |
3 | 2 | unisn 4950 | . . . . . 6 ⊢ ∪ {∅} = ∅ |
4 | 1, 3 | neeqtrri 3020 | . . . . 5 ⊢ 1o ≠ ∪ {∅} |
5 | df1o2 8529 | . . . . . 6 ⊢ 1o = {∅} | |
6 | 5 | unieqi 4943 | . . . . 5 ⊢ ∪ 1o = ∪ {∅} |
7 | 4, 6 | neeqtrri 3020 | . . . 4 ⊢ 1o ≠ ∪ 1o |
8 | 7 | neii 2948 | . . 3 ⊢ ¬ 1o = ∪ 1o |
9 | simp3 1138 | . . 3 ⊢ ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o) → 1o = ∪ 1o) | |
10 | 8, 9 | mto 197 | . 2 ⊢ ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o) |
11 | df-lim 6400 | . 2 ⊢ (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o)) | |
12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ Lim 1o |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ w3a 1087 = wceq 1537 ≠ wne 2946 ∅c0 4352 {csn 4648 ∪ cuni 4931 Ord word 6394 Lim wlim 6396 1oc1o 8515 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-nul 5324 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-sn 4649 df-pr 4651 df-uni 4932 df-lim 6400 df-suc 6401 df-1o 8522 |
This theorem is referenced by: 1ellim 8554 2ellim 8555 |
Copyright terms: Public domain | W3C validator |