MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim1 Structured version   Visualization version   GIF version

Theorem nlim1 8491
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
nlim1 ¬ Lim 1o

Proof of Theorem nlim1
StepHypRef Expression
1 1n0 8490 . . . . . 6 1o ≠ ∅
2 0ex 5307 . . . . . . 7 ∅ ∈ V
32unisn 4930 . . . . . 6 {∅} = ∅
41, 3neeqtrri 3014 . . . . 5 1o {∅}
5 df1o2 8475 . . . . . 6 1o = {∅}
65unieqi 4921 . . . . 5 1o = {∅}
74, 6neeqtrri 3014 . . . 4 1o 1o
87neii 2942 . . 3 ¬ 1o = 1o
9 simp3 1138 . . 3 ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o) → 1o = 1o)
108, 9mto 196 . 2 ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o)
11 df-lim 6369 . 2 (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o))
1210, 11mtbir 322 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1087   = wceq 1541  wne 2940  c0 4322  {csn 4628   cuni 4908  Ord word 6363  Lim wlim 6365  1oc1o 8461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-lim 6369  df-suc 6370  df-1o 8468
This theorem is referenced by:  1ellim  8500  2ellim  8501
  Copyright terms: Public domain W3C validator