MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim1 Structured version   Visualization version   GIF version

Theorem nlim1 8528
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
nlim1 ¬ Lim 1o

Proof of Theorem nlim1
StepHypRef Expression
1 1n0 8527 . . . . . 6 1o ≠ ∅
2 0ex 5306 . . . . . . 7 ∅ ∈ V
32unisn 4925 . . . . . 6 {∅} = ∅
41, 3neeqtrri 3013 . . . . 5 1o {∅}
5 df1o2 8514 . . . . . 6 1o = {∅}
65unieqi 4918 . . . . 5 1o = {∅}
74, 6neeqtrri 3013 . . . 4 1o 1o
87neii 2941 . . 3 ¬ 1o = 1o
9 simp3 1138 . . 3 ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o) → 1o = 1o)
108, 9mto 197 . 2 ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o)
11 df-lim 6388 . 2 (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o))
1210, 11mtbir 323 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1539  wne 2939  c0 4332  {csn 4625   cuni 4906  Ord word 6382  Lim wlim 6384  1oc1o 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-nul 5305
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-sn 4626  df-pr 4628  df-uni 4907  df-lim 6388  df-suc 6389  df-1o 8507
This theorem is referenced by:  1ellim  8537  2ellim  8538
  Copyright terms: Public domain W3C validator