| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlim1 | Structured version Visualization version GIF version | ||
| Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim1 | ⊢ ¬ Lim 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8527 | . . . . . 6 ⊢ 1o ≠ ∅ | |
| 2 | 0ex 5306 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 3 | 2 | unisn 4925 | . . . . . 6 ⊢ ∪ {∅} = ∅ |
| 4 | 1, 3 | neeqtrri 3013 | . . . . 5 ⊢ 1o ≠ ∪ {∅} |
| 5 | df1o2 8514 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | 5 | unieqi 4918 | . . . . 5 ⊢ ∪ 1o = ∪ {∅} |
| 7 | 4, 6 | neeqtrri 3013 | . . . 4 ⊢ 1o ≠ ∪ 1o |
| 8 | 7 | neii 2941 | . . 3 ⊢ ¬ 1o = ∪ 1o |
| 9 | simp3 1138 | . . 3 ⊢ ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o) → 1o = ∪ 1o) | |
| 10 | 8, 9 | mto 197 | . 2 ⊢ ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o) |
| 11 | df-lim 6388 | . 2 ⊢ (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ Lim 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1539 ≠ wne 2939 ∅c0 4332 {csn 4625 ∪ cuni 4906 Ord word 6382 Lim wlim 6384 1oc1o 8500 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-nul 5305 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-sn 4626 df-pr 4628 df-uni 4907 df-lim 6388 df-suc 6389 df-1o 8507 |
| This theorem is referenced by: 1ellim 8537 2ellim 8538 |
| Copyright terms: Public domain | W3C validator |