| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nlim1 | Structured version Visualization version GIF version | ||
| Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.) |
| Ref | Expression |
|---|---|
| nlim1 | ⊢ ¬ Lim 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1n0 8463 | . . . . . 6 ⊢ 1o ≠ ∅ | |
| 2 | 0ex 5270 | . . . . . . 7 ⊢ ∅ ∈ V | |
| 3 | 2 | unisn 4898 | . . . . . 6 ⊢ ∪ {∅} = ∅ |
| 4 | 1, 3 | neeqtrri 3000 | . . . . 5 ⊢ 1o ≠ ∪ {∅} |
| 5 | df1o2 8450 | . . . . . 6 ⊢ 1o = {∅} | |
| 6 | 5 | unieqi 4891 | . . . . 5 ⊢ ∪ 1o = ∪ {∅} |
| 7 | 4, 6 | neeqtrri 3000 | . . . 4 ⊢ 1o ≠ ∪ 1o |
| 8 | 7 | neii 2929 | . . 3 ⊢ ¬ 1o = ∪ 1o |
| 9 | simp3 1138 | . . 3 ⊢ ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o) → 1o = ∪ 1o) | |
| 10 | 8, 9 | mto 197 | . 2 ⊢ ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o) |
| 11 | df-lim 6345 | . 2 ⊢ (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = ∪ 1o)) | |
| 12 | 10, 11 | mtbir 323 | 1 ⊢ ¬ Lim 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ w3a 1086 = wceq 1540 ≠ wne 2927 ∅c0 4304 {csn 4597 ∪ cuni 4879 Ord word 6339 Lim wlim 6341 1oc1o 8436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-nul 5269 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2928 df-v 3457 df-dif 3925 df-un 3927 df-ss 3939 df-nul 4305 df-sn 4598 df-pr 4600 df-uni 4880 df-lim 6345 df-suc 6346 df-1o 8443 |
| This theorem is referenced by: 1ellim 8473 2ellim 8474 |
| Copyright terms: Public domain | W3C validator |