MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim1 Structured version   Visualization version   GIF version

Theorem nlim1 8407
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
nlim1 ¬ Lim 1o

Proof of Theorem nlim1
StepHypRef Expression
1 1n0 8406 . . . . . 6 1o ≠ ∅
2 0ex 5246 . . . . . . 7 ∅ ∈ V
32unisn 4877 . . . . . 6 {∅} = ∅
41, 3neeqtrri 2998 . . . . 5 1o {∅}
5 df1o2 8395 . . . . . 6 1o = {∅}
65unieqi 4870 . . . . 5 1o = {∅}
74, 6neeqtrri 2998 . . . 4 1o 1o
87neii 2927 . . 3 ¬ 1o = 1o
9 simp3 1138 . . 3 ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o) → 1o = 1o)
108, 9mto 197 . 2 ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o)
11 df-lim 6312 . 2 (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o))
1210, 11mtbir 323 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1540  wne 2925  c0 4284  {csn 4577   cuni 4858  Ord word 6306  Lim wlim 6308  1oc1o 8381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-nul 5245
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-sn 4578  df-pr 4580  df-uni 4859  df-lim 6312  df-suc 6313  df-1o 8388
This theorem is referenced by:  1ellim  8416  2ellim  8417
  Copyright terms: Public domain W3C validator