MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nlim1 Structured version   Visualization version   GIF version

Theorem nlim1 8464
Description: 1 is not a limit ordinal. (Contributed by BTernaryTau, 1-Dec-2024.)
Assertion
Ref Expression
nlim1 ¬ Lim 1o

Proof of Theorem nlim1
StepHypRef Expression
1 1n0 8463 . . . . . 6 1o ≠ ∅
2 0ex 5270 . . . . . . 7 ∅ ∈ V
32unisn 4898 . . . . . 6 {∅} = ∅
41, 3neeqtrri 3000 . . . . 5 1o {∅}
5 df1o2 8450 . . . . . 6 1o = {∅}
65unieqi 4891 . . . . 5 1o = {∅}
74, 6neeqtrri 3000 . . . 4 1o 1o
87neii 2929 . . 3 ¬ 1o = 1o
9 simp3 1138 . . 3 ((Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o) → 1o = 1o)
108, 9mto 197 . 2 ¬ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o)
11 df-lim 6345 . 2 (Lim 1o ↔ (Ord 1o ∧ 1o ≠ ∅ ∧ 1o = 1o))
1210, 11mtbir 323 1 ¬ Lim 1o
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  w3a 1086   = wceq 1540  wne 2927  c0 4304  {csn 4597   cuni 4879  Ord word 6339  Lim wlim 6341  1oc1o 8436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-nul 5269
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-sn 4598  df-pr 4600  df-uni 4880  df-lim 6345  df-suc 6346  df-1o 8443
This theorem is referenced by:  1ellim  8473  2ellim  8474
  Copyright terms: Public domain W3C validator