![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unizlim | Structured version Visualization version GIF version |
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
Ref | Expression |
---|---|
unizlim | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
2 | df-lim 6366 | . . . . . . . . 9 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
3 | 2 | biimpri 227 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
4 | 3 | 3exp 1119 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
5 | 1, 4 | biimtrrid 242 | . . . . . 6 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
6 | 5 | com23 86 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴))) |
7 | 6 | imp 407 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴)) |
8 | 7 | orrd 861 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴)) |
9 | 8 | ex 413 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴))) |
10 | uni0 4938 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
11 | 10 | eqcomi 2741 | . . . 4 ⊢ ∅ = ∪ ∅ |
12 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
13 | unieq 4918 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
14 | 11, 12, 13 | 3eqtr4a 2798 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∪ 𝐴) |
15 | limuni 6422 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
16 | 14, 15 | jaoi 855 | . 2 ⊢ ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = ∪ 𝐴) |
17 | 9, 16 | impbid1 224 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ≠ wne 2940 ∅c0 4321 ∪ cuni 4907 Ord word 6360 Lim wlim 6362 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-v 3476 df-dif 3950 df-in 3954 df-ss 3964 df-nul 4322 df-sn 4628 df-uni 4908 df-lim 6366 |
This theorem is referenced by: ordzsl 7830 oeeulem 8597 cantnfp1lem2 9670 cantnflem1 9680 cnfcom2lem 9692 ordcmp 35320 onsucf1olem 42005 onov0suclim 42009 |
Copyright terms: Public domain | W3C validator |