| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unizlim | Structured version Visualization version GIF version | ||
| Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
| Ref | Expression |
|---|---|
| unizlim | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | df-lim 6319 | . . . . . . . . 9 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 3 | 2 | biimpri 228 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
| 4 | 3 | 3exp 1119 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
| 5 | 1, 4 | biimtrrid 243 | . . . . . 6 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
| 6 | 5 | com23 86 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴))) |
| 7 | 6 | imp 406 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴)) |
| 8 | 7 | orrd 863 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴)) |
| 9 | 8 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴))) |
| 10 | uni0 4888 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 11 | 10 | eqcomi 2742 | . . . 4 ⊢ ∅ = ∪ ∅ |
| 12 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 13 | unieq 4871 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
| 14 | 11, 12, 13 | 3eqtr4a 2794 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∪ 𝐴) |
| 15 | limuni 6376 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 16 | 14, 15 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = ∪ 𝐴) |
| 17 | 9, 16 | impbid1 225 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1541 ≠ wne 2929 ∅c0 4282 ∪ cuni 4860 Ord word 6313 Lim wlim 6315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-ss 3915 df-nul 4283 df-uni 4861 df-lim 6319 |
| This theorem is referenced by: ordzsl 7784 oeeulem 8525 cantnfp1lem2 9580 cantnflem1 9590 cnfcom2lem 9602 ordcmp 36563 onsucf1olem 43427 onov0suclim 43431 |
| Copyright terms: Public domain | W3C validator |