MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unizlim Structured version   Visualization version   GIF version

Theorem unizlim 6308
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
unizlim (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))

Proof of Theorem unizlim
StepHypRef Expression
1 df-ne 2933 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 df-lim 6196 . . . . . . . . 9 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
32biimpri 231 . . . . . . . 8 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
433exp 1121 . . . . . . 7 (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
51, 4syl5bir 246 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
65com23 86 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴)))
76imp 410 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴))
87orrd 863 . . 3 ((Ord 𝐴𝐴 = 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴))
98ex 416 . 2 (Ord 𝐴 → (𝐴 = 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴)))
10 uni0 4835 . . . . 5 ∅ = ∅
1110eqcomi 2745 . . . 4 ∅ =
12 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
13 unieq 4816 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1411, 12, 133eqtr4a 2797 . . 3 (𝐴 = ∅ → 𝐴 = 𝐴)
15 limuni 6251 . . 3 (Lim 𝐴𝐴 = 𝐴)
1614, 15jaoi 857 . 2 ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = 𝐴)
179, 16impbid1 228 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847  w3a 1089   = wceq 1543  wne 2932  c0 4223   cuni 4805  Ord word 6190  Lim wlim 6192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-11 2160  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-ne 2933  df-ral 3056  df-rex 3057  df-v 3400  df-dif 3856  df-in 3860  df-ss 3870  df-nul 4224  df-sn 4528  df-uni 4806  df-lim 6196
This theorem is referenced by:  ordzsl  7602  oeeulem  8307  cantnfp1lem2  9272  cantnflem1  9282  cnfcom2lem  9294  ordcmp  34322
  Copyright terms: Public domain W3C validator