MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unizlim Structured version   Visualization version   GIF version

Theorem unizlim 6279
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
unizlim (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))

Proof of Theorem unizlim
StepHypRef Expression
1 df-ne 2991 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 df-lim 6168 . . . . . . . . 9 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
32biimpri 231 . . . . . . . 8 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
433exp 1116 . . . . . . 7 (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
51, 4syl5bir 246 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
65com23 86 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴)))
76imp 410 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴))
87orrd 860 . . 3 ((Ord 𝐴𝐴 = 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴))
98ex 416 . 2 (Ord 𝐴 → (𝐴 = 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴)))
10 uni0 4831 . . . . 5 ∅ = ∅
1110eqcomi 2810 . . . 4 ∅ =
12 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
13 unieq 4814 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1411, 12, 133eqtr4a 2862 . . 3 (𝐴 = ∅ → 𝐴 = 𝐴)
15 limuni 6223 . . 3 (Lim 𝐴𝐴 = 𝐴)
1614, 15jaoi 854 . 2 ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = 𝐴)
179, 16impbid1 228 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wne 2990  c0 4246   cuni 4803  Ord word 6162  Lim wlim 6164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-11 2159  ax-ext 2773
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-ne 2991  df-ral 3114  df-rex 3115  df-v 3446  df-dif 3887  df-in 3891  df-ss 3901  df-nul 4247  df-sn 4529  df-uni 4804  df-lim 6168
This theorem is referenced by:  ordzsl  7544  oeeulem  8214  cantnfp1lem2  9130  cantnflem1  9140  cnfcom2lem  9152  ordcmp  33909
  Copyright terms: Public domain W3C validator