MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unizlim Structured version   Visualization version   GIF version

Theorem unizlim 6518
Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.)
Assertion
Ref Expression
unizlim (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))

Proof of Theorem unizlim
StepHypRef Expression
1 df-ne 2947 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 df-lim 6400 . . . . . . . . 9 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
32biimpri 228 . . . . . . . 8 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
433exp 1119 . . . . . . 7 (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
51, 4biimtrrid 243 . . . . . 6 (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = 𝐴 → Lim 𝐴)))
65com23 86 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴)))
76imp 406 . . . 4 ((Ord 𝐴𝐴 = 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴))
87orrd 862 . . 3 ((Ord 𝐴𝐴 = 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴))
98ex 412 . 2 (Ord 𝐴 → (𝐴 = 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴)))
10 uni0 4959 . . . . 5 ∅ = ∅
1110eqcomi 2749 . . . 4 ∅ =
12 id 22 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
13 unieq 4942 . . . 4 (𝐴 = ∅ → 𝐴 = ∅)
1411, 12, 133eqtr4a 2806 . . 3 (𝐴 = ∅ → 𝐴 = 𝐴)
15 limuni 6456 . . 3 (Lim 𝐴𝐴 = 𝐴)
1614, 15jaoi 856 . 2 ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = 𝐴)
179, 16impbid1 225 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wne 2946  c0 4352   cuni 4931  Ord word 6394  Lim wlim 6396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-11 2158  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-v 3490  df-dif 3979  df-ss 3993  df-nul 4353  df-sn 4649  df-uni 4932  df-lim 6400
This theorem is referenced by:  ordzsl  7882  oeeulem  8657  cantnfp1lem2  9748  cantnflem1  9758  cnfcom2lem  9770  ordcmp  36413  onsucf1olem  43232  onov0suclim  43236
  Copyright terms: Public domain W3C validator