| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unizlim | Structured version Visualization version GIF version | ||
| Description: An ordinal equal to its own union is either zero or a limit ordinal. (Contributed by NM, 1-Oct-2003.) |
| Ref | Expression |
|---|---|
| unizlim | ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2933 | . . . . . . 7 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 2 | df-lim 6357 | . . . . . . . . 9 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 3 | 2 | biimpri 228 | . . . . . . . 8 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
| 4 | 3 | 3exp 1119 | . . . . . . 7 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
| 5 | 1, 4 | biimtrrid 243 | . . . . . 6 ⊢ (Ord 𝐴 → (¬ 𝐴 = ∅ → (𝐴 = ∪ 𝐴 → Lim 𝐴))) |
| 6 | 5 | com23 86 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (¬ 𝐴 = ∅ → Lim 𝐴))) |
| 7 | 6 | imp 406 | . . . 4 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (¬ 𝐴 = ∅ → Lim 𝐴)) |
| 8 | 7 | orrd 863 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) → (𝐴 = ∅ ∨ Lim 𝐴)) |
| 9 | 8 | ex 412 | . 2 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 → (𝐴 = ∅ ∨ Lim 𝐴))) |
| 10 | uni0 4911 | . . . . 5 ⊢ ∪ ∅ = ∅ | |
| 11 | 10 | eqcomi 2744 | . . . 4 ⊢ ∅ = ∪ ∅ |
| 12 | id 22 | . . . 4 ⊢ (𝐴 = ∅ → 𝐴 = ∅) | |
| 13 | unieq 4894 | . . . 4 ⊢ (𝐴 = ∅ → ∪ 𝐴 = ∪ ∅) | |
| 14 | 11, 12, 13 | 3eqtr4a 2796 | . . 3 ⊢ (𝐴 = ∅ → 𝐴 = ∪ 𝐴) |
| 15 | limuni 6414 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
| 16 | 14, 15 | jaoi 857 | . 2 ⊢ ((𝐴 = ∅ ∨ Lim 𝐴) → 𝐴 = ∪ 𝐴) |
| 17 | 9, 16 | impbid1 225 | 1 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ (𝐴 = ∅ ∨ Lim 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ≠ wne 2932 ∅c0 4308 ∪ cuni 4883 Ord word 6351 Lim wlim 6353 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-sn 4602 df-uni 4884 df-lim 6357 |
| This theorem is referenced by: ordzsl 7838 oeeulem 8611 cantnfp1lem2 9691 cantnflem1 9701 cnfcom2lem 9713 ordcmp 36411 onsucf1olem 43241 onov0suclim 43245 |
| Copyright terms: Public domain | W3C validator |