MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limon Structured version   Visualization version   GIF version

Theorem limon 7683
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 7627 . 2 Ord On
2 onn0 6330 . 2 On ≠ ∅
3 unon 7678 . . 3 On = On
43eqcomi 2747 . 2 On = On
5 df-lim 6271 . 2 (Lim On ↔ (Ord On ∧ On ≠ ∅ ∧ On = On))
61, 2, 4, 5mpbir3an 1340 1 Lim On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2943  c0 4256   cuni 4839  Ord word 6265  Oncon0 6266  Lim wlim 6267
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272
This theorem is referenced by:  limom  7728  oesuc  8357  limensuc  8941  limsucncmp  34635
  Copyright terms: Public domain W3C validator