| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limon | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| limon | ⊢ Lim On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7776 | . 2 ⊢ Ord On | |
| 2 | onn0 6423 | . 2 ⊢ On ≠ ∅ | |
| 3 | unon 7830 | . . 3 ⊢ ∪ On = On | |
| 4 | 3 | eqcomi 2745 | . 2 ⊢ On = ∪ On |
| 5 | df-lim 6362 | . 2 ⊢ (Lim On ↔ (Ord On ∧ On ≠ ∅ ∧ On = ∪ On)) | |
| 6 | 1, 2, 4, 5 | mpbir3an 1342 | 1 ⊢ Lim On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ≠ wne 2933 ∅c0 4313 ∪ cuni 4888 Ord word 6356 Oncon0 6357 Lim wlim 6358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-tr 5235 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 |
| This theorem is referenced by: limom 7882 oesuc 8544 limensuc 9173 limsucncmp 36469 dflim5 43320 |
| Copyright terms: Public domain | W3C validator |