MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limon Structured version   Visualization version   GIF version

Theorem limon 7776
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 7716 . 2 Ord On
2 onn0 6387 . 2 On ≠ ∅
3 unon 7771 . . 3 On = On
43eqcomi 2746 . 2 On = On
5 df-lim 6327 . 2 (Lim On ↔ (Ord On ∧ On ≠ ∅ ∧ On = On))
61, 2, 4, 5mpbir3an 1342 1 Lim On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1542  wne 2944  c0 4287   cuni 4870  Ord word 6321  Oncon0 6322  Lim wlim 6323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328
This theorem is referenced by:  limom  7823  oesuc  8478  limensuc  9105  limsucncmp  34947  dflim5  41693
  Copyright terms: Public domain W3C validator