MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limon Structured version   Visualization version   GIF version

Theorem limon 7857
Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.)
Assertion
Ref Expression
limon Lim On

Proof of Theorem limon
StepHypRef Expression
1 ordon 7798 . 2 Ord On
2 onn0 6448 . 2 On ≠ ∅
3 unon 7852 . . 3 On = On
43eqcomi 2745 . 2 On = On
5 df-lim 6388 . 2 (Lim On ↔ (Ord On ∧ On ≠ ∅ ∧ On = On))
61, 2, 4, 5mpbir3an 1341 1 Lim On
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wne 2939  c0 4332   cuni 4906  Ord word 6382  Oncon0 6383  Lim wlim 6384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-tr 5259  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389
This theorem is referenced by:  limom  7904  oesuc  8566  limensuc  9195  limsucncmp  36448  dflim5  43347
  Copyright terms: Public domain W3C validator