| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limon | Structured version Visualization version GIF version | ||
| Description: The class of ordinal numbers is a limit ordinal. (Contributed by NM, 24-Mar-1995.) |
| Ref | Expression |
|---|---|
| limon | ⊢ Lim On |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordon 7716 | . 2 ⊢ Ord On | |
| 2 | onn0 6377 | . 2 ⊢ On ≠ ∅ | |
| 3 | unon 7767 | . . 3 ⊢ ∪ On = On | |
| 4 | 3 | eqcomi 2742 | . 2 ⊢ On = ∪ On |
| 5 | df-lim 6316 | . 2 ⊢ (Lim On ↔ (Ord On ∧ On ≠ ∅ ∧ On = ∪ On)) | |
| 6 | 1, 2, 4, 5 | mpbir3an 1342 | 1 ⊢ Lim On |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ≠ wne 2929 ∅c0 4282 ∪ cuni 4858 Ord word 6310 Oncon0 6311 Lim wlim 6312 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-tr 5201 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 |
| This theorem is referenced by: limom 7818 oesuc 8448 limensuc 9074 limsucncmp 36511 dflim5 43446 |
| Copyright terms: Public domain | W3C validator |