![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dflim3 | Structured version Visualization version GIF version |
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dflim3 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6391 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 3anass 1094 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) | |
3 | df-ne 2939 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)) |
5 | orduninsuc 7864 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
6 | 4, 5 | anbi12d 632 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
7 | ioran 985 | . . . 4 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
8 | 6, 7 | bitr4di 289 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
9 | 8 | pm5.32i 574 | . 2 ⊢ ((Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
10 | 1, 2, 9 | 3bitri 297 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1537 ≠ wne 2938 ∃wrex 3068 ∅c0 4339 ∪ cuni 4912 Ord word 6385 Oncon0 6386 Lim wlim 6387 suc csuc 6388 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 |
This theorem is referenced by: nlimon 7872 tfinds 7881 oalimcl 8597 omlimcl 8615 r1wunlim 10775 dflim6 43254 naddgeoa 43384 faosnf0.11b 43417 dfsucon 43513 |
Copyright terms: Public domain | W3C validator |