Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dflim3 | Structured version Visualization version GIF version |
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
dflim3 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6172 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 3anass 1093 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) | |
3 | df-ne 2953 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
4 | 3 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)) |
5 | orduninsuc 7555 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
6 | 4, 5 | anbi12d 634 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
7 | ioran 982 | . . . 4 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
8 | 6, 7 | bitr4di 293 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
9 | 8 | pm5.32i 579 | . 2 ⊢ ((Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
10 | 1, 2, 9 | 3bitri 301 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 209 ∧ wa 400 ∨ wo 845 ∧ w3a 1085 = wceq 1539 ≠ wne 2952 ∃wrex 3072 ∅c0 4226 ∪ cuni 4796 Ord word 6166 Oncon0 6167 Lim wlim 6168 suc csuc 6169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5167 ax-nul 5174 ax-pr 5296 ax-un 7457 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-pss 3878 df-nul 4227 df-if 4419 df-pw 4494 df-sn 4521 df-pr 4523 df-tp 4525 df-op 4527 df-uni 4797 df-br 5031 df-opab 5093 df-tr 5137 df-eprel 5433 df-po 5441 df-so 5442 df-fr 5481 df-we 5483 df-ord 6170 df-on 6171 df-lim 6172 df-suc 6173 |
This theorem is referenced by: nlimon 7563 tfinds 7571 oalimcl 8194 omlimcl 8212 r1wunlim 10187 dfsucon 40594 |
Copyright terms: Public domain | W3C validator |