|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dflim3 | Structured version Visualization version GIF version | ||
| Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) | 
| Ref | Expression | 
|---|---|
| dflim3 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-lim 6389 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 3anass 1095 | . 2 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) | |
| 3 | df-ne 2941 | . . . . . 6 ⊢ (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅) | |
| 4 | 3 | a1i 11 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)) | 
| 5 | orduninsuc 7864 | . . . . 5 ⊢ (Ord 𝐴 → (𝐴 = ∪ 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
| 6 | 4, 5 | anbi12d 632 | . . . 4 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | 
| 7 | ioran 986 | . . . 4 ⊢ (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)) | |
| 8 | 6, 7 | bitr4di 289 | . . 3 ⊢ (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | 
| 9 | 8 | pm5.32i 574 | . 2 ⊢ ((Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | 
| 10 | 1, 2, 9 | 3bitri 297 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 ∧ w3a 1087 = wceq 1540 ≠ wne 2940 ∃wrex 3070 ∅c0 4333 ∪ cuni 4907 Ord word 6383 Oncon0 6384 Lim wlim 6385 suc csuc 6386 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-tr 5260 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 | 
| This theorem is referenced by: nlimon 7872 tfinds 7881 oalimcl 8598 omlimcl 8616 r1wunlim 10777 dflim6 43277 naddgeoa 43407 faosnf0.11b 43440 dfsucon 43536 | 
| Copyright terms: Public domain | W3C validator |