MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflim3 Structured version   Visualization version   GIF version

Theorem dflim3 7823
Description: An alternate definition of a limit ordinal, which is any ordinal that is neither zero nor a successor. (Contributed by NM, 1-Nov-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dflim3 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem dflim3
StepHypRef Expression
1 df-lim 6337 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
2 3anass 1094 . 2 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
3 df-ne 2926 . . . . . 6 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
43a1i 11 . . . . 5 (Ord 𝐴 → (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅))
5 orduninsuc 7819 . . . . 5 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
64, 5anbi12d 632 . . . 4 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
7 ioran 985 . . . 4 (¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥) ↔ (¬ 𝐴 = ∅ ∧ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
86, 7bitr4di 289 . . 3 (Ord 𝐴 → ((𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
98pm5.32i 574 . 2 ((Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)) ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
101, 2, 93bitri 297 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ¬ (𝐴 = ∅ ∨ ∃𝑥 ∈ On 𝐴 = suc 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wne 2925  wrex 3053  c0 4296   cuni 4871  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-tr 5215  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338
This theorem is referenced by:  nlimon  7827  tfinds  7836  oalimcl  8524  omlimcl  8542  r1wunlim  10690  dflim6  43253  naddgeoa  43383  faosnf0.11b  43416  dfsucon  43512
  Copyright terms: Public domain W3C validator