Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlimcl2 Structured version   Visualization version   GIF version

Theorem omlimcl2 43399
Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
omlimcl2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))

Proof of Theorem omlimcl2
StepHypRef Expression
1 eloni 6324 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
21ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴)
3 ne0i 4290 . . . . . 6 (∅ ∈ 𝐴𝐴 ≠ ∅)
43adantl 481 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅)
5 id 22 . . . . 5 (𝐴 = 𝐴𝐴 = 𝐴)
6 df-lim 6319 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 228 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
82, 4, 5, 7syl2an3an 1424 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = 𝐴) → Lim 𝐴)
98ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim 𝐴))
10 limelon 6379 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
1110ad3antlr 731 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On)
12 simpll 766 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
1312anim1i 615 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴))
14 0ellim 6378 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
1514adantl 481 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
1615ad3antlr 731 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵)
17 omlimcl 8502 . . . . 5 (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴))
1811, 13, 16, 17syl21anc 837 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴))
1918ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴)))
209, 19syld 47 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim (𝐵 ·o 𝐴)))
21 onuni 7730 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ∈ On)
2221, 10anim12ci 614 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
23 omcl 8460 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o 𝐴) ∈ On)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ·o 𝐴) ∈ On)
25 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵𝐶 ∧ Lim 𝐵))
2624, 25jca 511 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
2726ad2antrr 726 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
28 oalimcl 8484 . . . . 5 (((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
2927, 28syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
30 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → 𝐴 = suc 𝐴)
3130oveq2d 7371 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc 𝐴))
3222ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
33 omsuc 8450 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3432, 33syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3531, 34eqtrd 2768 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
36 limeq 6326 . . . . 5 ((𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3735, 36syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3829, 37mpbird 257 . . 3 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim (𝐵 ·o 𝐴))
3938ex 412 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc 𝐴 → Lim (𝐵 ·o 𝐴)))
40 orduniorsuc 7769 . . 3 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
412, 40syl 17 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
4220, 39, 41mpjaod 860 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wne 2929  c0 4282   cuni 4860  Ord word 6313  Oncon0 6314  Lim wlim 6315  suc csuc 6316  (class class class)co 7355   +o coa 8391   ·o comu 8392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399
This theorem is referenced by:  onexlimgt  43400  succlg  43485  dflim5  43486
  Copyright terms: Public domain W3C validator