Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlimcl2 Structured version   Visualization version   GIF version

Theorem omlimcl2 43259
Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
omlimcl2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))

Proof of Theorem omlimcl2
StepHypRef Expression
1 eloni 6393 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
21ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴)
3 ne0i 4340 . . . . . 6 (∅ ∈ 𝐴𝐴 ≠ ∅)
43adantl 481 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅)
5 id 22 . . . . 5 (𝐴 = 𝐴𝐴 = 𝐴)
6 df-lim 6388 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 228 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
82, 4, 5, 7syl2an3an 1423 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = 𝐴) → Lim 𝐴)
98ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim 𝐴))
10 limelon 6447 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
1110ad3antlr 731 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On)
12 simpll 766 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
1312anim1i 615 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴))
14 0ellim 6446 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
1514adantl 481 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
1615ad3antlr 731 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵)
17 omlimcl 8617 . . . . 5 (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴))
1811, 13, 16, 17syl21anc 837 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴))
1918ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴)))
209, 19syld 47 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim (𝐵 ·o 𝐴)))
21 onuni 7809 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ∈ On)
2221, 10anim12ci 614 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
23 omcl 8575 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o 𝐴) ∈ On)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ·o 𝐴) ∈ On)
25 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵𝐶 ∧ Lim 𝐵))
2624, 25jca 511 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
2726ad2antrr 726 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
28 oalimcl 8599 . . . . 5 (((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
2927, 28syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
30 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → 𝐴 = suc 𝐴)
3130oveq2d 7448 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc 𝐴))
3222ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
33 omsuc 8565 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3432, 33syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3531, 34eqtrd 2776 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
36 limeq 6395 . . . . 5 ((𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3735, 36syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3829, 37mpbird 257 . . 3 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim (𝐵 ·o 𝐴))
3938ex 412 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc 𝐴 → Lim (𝐵 ·o 𝐴)))
40 orduniorsuc 7851 . . 3 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
412, 40syl 17 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
4220, 39, 41mpjaod 860 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1539  wcel 2107  wne 2939  c0 4332   cuni 4906  Ord word 6382  Oncon0 6383  Lim wlim 6384  suc csuc 6385  (class class class)co 7432   +o coa 8504   ·o comu 8505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-oadd 8511  df-omul 8512
This theorem is referenced by:  onexlimgt  43260  succlg  43346  dflim5  43347
  Copyright terms: Public domain W3C validator