Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlimcl2 Structured version   Visualization version   GIF version

Theorem omlimcl2 43231
Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
omlimcl2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))

Proof of Theorem omlimcl2
StepHypRef Expression
1 eloni 6342 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
21ad2antrr 726 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴)
3 ne0i 4304 . . . . . 6 (∅ ∈ 𝐴𝐴 ≠ ∅)
43adantl 481 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅)
5 id 22 . . . . 5 (𝐴 = 𝐴𝐴 = 𝐴)
6 df-lim 6337 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 228 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
82, 4, 5, 7syl2an3an 1424 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = 𝐴) → Lim 𝐴)
98ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim 𝐴))
10 limelon 6397 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
1110ad3antlr 731 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On)
12 simpll 766 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
1312anim1i 615 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴))
14 0ellim 6396 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
1514adantl 481 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
1615ad3antlr 731 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵)
17 omlimcl 8542 . . . . 5 (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴))
1811, 13, 16, 17syl21anc 837 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴))
1918ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴)))
209, 19syld 47 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim (𝐵 ·o 𝐴)))
21 onuni 7764 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ∈ On)
2221, 10anim12ci 614 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
23 omcl 8500 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o 𝐴) ∈ On)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ·o 𝐴) ∈ On)
25 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵𝐶 ∧ Lim 𝐵))
2624, 25jca 511 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
2726ad2antrr 726 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
28 oalimcl 8524 . . . . 5 (((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
2927, 28syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
30 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → 𝐴 = suc 𝐴)
3130oveq2d 7403 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc 𝐴))
3222ad2antrr 726 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
33 omsuc 8490 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3432, 33syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3531, 34eqtrd 2764 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
36 limeq 6344 . . . . 5 ((𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3735, 36syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3829, 37mpbird 257 . . 3 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim (𝐵 ·o 𝐴))
3938ex 412 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc 𝐴 → Lim (𝐵 ·o 𝐴)))
40 orduniorsuc 7805 . . 3 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
412, 40syl 17 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
4220, 39, 41mpjaod 860 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  c0 4296   cuni 4871  Ord word 6331  Oncon0 6332  Lim wlim 6333  suc csuc 6334  (class class class)co 7387   +o coa 8431   ·o comu 8432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439
This theorem is referenced by:  onexlimgt  43232  succlg  43317  dflim5  43318
  Copyright terms: Public domain W3C validator