Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlimcl2 Structured version   Visualization version   GIF version

Theorem omlimcl2 43203
Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
omlimcl2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))

Proof of Theorem omlimcl2
StepHypRef Expression
1 eloni 6405 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
21ad2antrr 725 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴)
3 ne0i 4364 . . . . . 6 (∅ ∈ 𝐴𝐴 ≠ ∅)
43adantl 481 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅)
5 id 22 . . . . 5 (𝐴 = 𝐴𝐴 = 𝐴)
6 df-lim 6400 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 228 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
82, 4, 5, 7syl2an3an 1422 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = 𝐴) → Lim 𝐴)
98ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim 𝐴))
10 limelon 6459 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
1110ad3antlr 730 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On)
12 simpll 766 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
1312anim1i 614 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴))
14 0ellim 6458 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
1514adantl 481 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
1615ad3antlr 730 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵)
17 omlimcl 8634 . . . . 5 (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴))
1811, 13, 16, 17syl21anc 837 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴))
1918ex 412 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴)))
209, 19syld 47 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim (𝐵 ·o 𝐴)))
21 onuni 7824 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ∈ On)
2221, 10anim12ci 613 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
23 omcl 8592 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o 𝐴) ∈ On)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ·o 𝐴) ∈ On)
25 simpr 484 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵𝐶 ∧ Lim 𝐵))
2624, 25jca 511 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
2726ad2antrr 725 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
28 oalimcl 8616 . . . . 5 (((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
2927, 28syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
30 simpr 484 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → 𝐴 = suc 𝐴)
3130oveq2d 7464 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc 𝐴))
3222ad2antrr 725 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
33 omsuc 8582 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3432, 33syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3531, 34eqtrd 2780 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
36 limeq 6407 . . . . 5 ((𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3735, 36syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3829, 37mpbird 257 . . 3 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim (𝐵 ·o 𝐴))
3938ex 412 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc 𝐴 → Lim (𝐵 ·o 𝐴)))
40 orduniorsuc 7866 . . 3 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
412, 40syl 17 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
4220, 39, 41mpjaod 859 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946  c0 4352   cuni 4931  Ord word 6394  Oncon0 6395  Lim wlim 6396  suc csuc 6397  (class class class)co 7448   +o coa 8519   ·o comu 8520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-oadd 8526  df-omul 8527
This theorem is referenced by:  onexlimgt  43204  succlg  43290  dflim5  43291
  Copyright terms: Public domain W3C validator