Proof of Theorem omlimcl2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | eloni 6393 | . . . . . 6
⊢ (𝐴 ∈ On → Ord 𝐴) | 
| 2 | 1 | ad2antrr 726 | . . . . 5
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴) | 
| 3 |  | ne0i 4340 | . . . . . 6
⊢ (∅
∈ 𝐴 → 𝐴 ≠ ∅) | 
| 4 | 3 | adantl 481 | . . . . 5
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅) | 
| 5 |  | id 22 | . . . . 5
⊢ (𝐴 = ∪
𝐴 → 𝐴 = ∪ 𝐴) | 
| 6 |  | df-lim 6388 | . . . . . 6
⊢ (Lim
𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | 
| 7 | 6 | biimpri 228 | . . . . 5
⊢ ((Ord
𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) | 
| 8 | 2, 4, 5, 7 | syl2an3an 1423 | . . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) | 
| 9 | 8 | ex 412 | . . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = ∪ 𝐴 → Lim 𝐴)) | 
| 10 |  | limelon 6447 | . . . . . 6
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | 
| 11 | 10 | ad3antlr 731 | . . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On) | 
| 12 |  | simpll 766 | . . . . . 6
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) | 
| 13 | 12 | anim1i 615 | . . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴)) | 
| 14 |  | 0ellim 6446 | . . . . . . 7
⊢ (Lim
𝐵 → ∅ ∈
𝐵) | 
| 15 | 14 | adantl 481 | . . . . . 6
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵) | 
| 16 | 15 | ad3antlr 731 | . . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵) | 
| 17 |  | omlimcl 8617 | . . . . 5
⊢ (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴)) | 
| 18 | 11, 13, 16, 17 | syl21anc 837 | . . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴)) | 
| 19 | 18 | ex 412 | . . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴))) | 
| 20 | 9, 19 | syld 47 | . 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = ∪ 𝐴 → Lim (𝐵 ·o 𝐴))) | 
| 21 |  | onuni 7809 | . . . . . . . . 9
⊢ (𝐴 ∈ On → ∪ 𝐴
∈ On) | 
| 22 | 21, 10 | anim12ci 614 | . . . . . . . 8
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ ∪ 𝐴
∈ On)) | 
| 23 |  | omcl 8575 | . . . . . . . 8
⊢ ((𝐵 ∈ On ∧ ∪ 𝐴
∈ On) → (𝐵
·o ∪ 𝐴) ∈ On) | 
| 24 | 22, 23 | syl 17 | . . . . . . 7
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐵 ·o ∪ 𝐴)
∈ On) | 
| 25 |  | simpr 484 | . . . . . . 7
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) | 
| 26 | 24, 25 | jca 511 | . . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o ∪ 𝐴)
∈ On ∧ (𝐵 ∈
𝐶 ∧ Lim 𝐵))) | 
| 27 | 26 | ad2antrr 726 | . . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → ((𝐵 ·o ∪ 𝐴)
∈ On ∧ (𝐵 ∈
𝐶 ∧ Lim 𝐵))) | 
| 28 |  | oalimcl 8599 | . . . . 5
⊢ (((𝐵 ·o ∪ 𝐴)
∈ On ∧ (𝐵 ∈
𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) | 
| 29 | 27, 28 | syl 17 | . . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → Lim ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) | 
| 30 |  | simpr 484 | . . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → 𝐴 = suc ∪ 𝐴) | 
| 31 | 30 | oveq2d 7448 | . . . . . 6
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc ∪ 𝐴)) | 
| 32 | 22 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ∈ On ∧ ∪ 𝐴
∈ On)) | 
| 33 |  | omsuc 8565 | . . . . . . 7
⊢ ((𝐵 ∈ On ∧ ∪ 𝐴
∈ On) → (𝐵
·o suc ∪ 𝐴) = ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) | 
| 34 | 32, 33 | syl 17 | . . . . . 6
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ·o suc ∪ 𝐴) =
((𝐵 ·o
∪ 𝐴) +o 𝐵)) | 
| 35 | 31, 34 | eqtrd 2776 | . . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) | 
| 36 |  | limeq 6395 | . . . . 5
⊢ ((𝐵 ·o 𝐴) = ((𝐵 ·o ∪ 𝐴)
+o 𝐵) →
(Lim (𝐵
·o 𝐴)
↔ Lim ((𝐵
·o ∪ 𝐴) +o 𝐵))) | 
| 37 | 35, 36 | syl 17 | . . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o ∪ 𝐴)
+o 𝐵))) | 
| 38 | 29, 37 | mpbird 257 | . . 3
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → Lim (𝐵 ·o 𝐴)) | 
| 39 | 38 | ex 412 | . 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc ∪ 𝐴 → Lim (𝐵 ·o 𝐴))) | 
| 40 |  | orduniorsuc 7851 | . . 3
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | 
| 41 | 2, 40 | syl 17 | . 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) | 
| 42 | 20, 39, 41 | mpjaod 860 | 1
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴)) |