Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omlimcl2 Structured version   Visualization version   GIF version

Theorem omlimcl2 42942
Description: The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
Assertion
Ref Expression
omlimcl2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))

Proof of Theorem omlimcl2
StepHypRef Expression
1 eloni 6376 . . . . . 6 (𝐴 ∈ On → Ord 𝐴)
21ad2antrr 724 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴)
3 ne0i 4335 . . . . . 6 (∅ ∈ 𝐴𝐴 ≠ ∅)
43adantl 480 . . . . 5 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅)
5 id 22 . . . . 5 (𝐴 = 𝐴𝐴 = 𝐴)
6 df-lim 6371 . . . . . 6 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
76biimpri 227 . . . . 5 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) → Lim 𝐴)
82, 4, 5, 7syl2an3an 1419 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = 𝐴) → Lim 𝐴)
98ex 411 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim 𝐴))
10 limelon 6430 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
1110ad3antlr 729 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On)
12 simpll 765 . . . . . 6 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On)
1312anim1i 613 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴))
14 0ellim 6429 . . . . . . 7 (Lim 𝐵 → ∅ ∈ 𝐵)
1514adantl 480 . . . . . 6 ((𝐵𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵)
1615ad3antlr 729 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵)
17 omlimcl 8598 . . . . 5 (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴))
1811, 13, 16, 17syl21anc 836 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴))
1918ex 411 . . 3 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴)))
209, 19syld 47 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴 → Lim (𝐵 ·o 𝐴)))
21 onuni 7787 . . . . . . . . 9 (𝐴 ∈ On → 𝐴 ∈ On)
2221, 10anim12ci 612 . . . . . . . 8 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
23 omcl 8556 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o 𝐴) ∈ On)
2422, 23syl 17 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵 ·o 𝐴) ∈ On)
25 simpr 483 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐵𝐶 ∧ Lim 𝐵))
2624, 25jca 510 . . . . . 6 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
2726ad2antrr 724 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → ((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)))
28 oalimcl 8580 . . . . 5 (((𝐵 ·o 𝐴) ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
2927, 28syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim ((𝐵 ·o 𝐴) +o 𝐵))
30 simpr 483 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → 𝐴 = suc 𝐴)
3130oveq2d 7430 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc 𝐴))
3222ad2antrr 724 . . . . . . 7 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ∈ On ∧ 𝐴 ∈ On))
33 omsuc 8546 . . . . . . 7 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3432, 33syl 17 . . . . . 6 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o suc 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
3531, 34eqtrd 2766 . . . . 5 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵))
36 limeq 6378 . . . . 5 ((𝐵 ·o 𝐴) = ((𝐵 ·o 𝐴) +o 𝐵) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3735, 36syl 17 . . . 4 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o 𝐴) +o 𝐵)))
3829, 37mpbird 256 . . 3 ((((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc 𝐴) → Lim (𝐵 ·o 𝐴))
3938ex 411 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc 𝐴 → Lim (𝐵 ·o 𝐴)))
40 orduniorsuc 7829 . . 3 (Ord 𝐴 → (𝐴 = 𝐴𝐴 = suc 𝐴))
412, 40syl 17 . 2 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = 𝐴𝐴 = suc 𝐴))
4220, 39, 41mpjaod 858 1 (((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1534  wcel 2099  wne 2930  c0 4323   cuni 4906  Ord word 6365  Oncon0 6366  Lim wlim 6367  suc csuc 6368  (class class class)co 7414   +o coa 8483   ·o comu 8484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pr 5424  ax-un 7736
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-oadd 8490  df-omul 8491
This theorem is referenced by:  onexlimgt  42943  succlg  43029  dflim5  43030
  Copyright terms: Public domain W3C validator