Proof of Theorem omlimcl2
| Step | Hyp | Ref
| Expression |
| 1 | | eloni 6367 |
. . . . . 6
⊢ (𝐴 ∈ On → Ord 𝐴) |
| 2 | 1 | ad2antrr 726 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Ord 𝐴) |
| 3 | | ne0i 4321 |
. . . . . 6
⊢ (∅
∈ 𝐴 → 𝐴 ≠ ∅) |
| 4 | 3 | adantl 481 |
. . . . 5
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ≠ ∅) |
| 5 | | id 22 |
. . . . 5
⊢ (𝐴 = ∪
𝐴 → 𝐴 = ∪ 𝐴) |
| 6 | | df-lim 6362 |
. . . . . 6
⊢ (Lim
𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| 7 | 6 | biimpri 228 |
. . . . 5
⊢ ((Ord
𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
| 8 | 2, 4, 5, 7 | syl2an3an 1424 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = ∪ 𝐴) → Lim 𝐴) |
| 9 | 8 | ex 412 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = ∪ 𝐴 → Lim 𝐴)) |
| 10 | | limelon 6422 |
. . . . . 6
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) |
| 11 | 10 | ad3antlr 731 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → 𝐵 ∈ On) |
| 12 | | simpll 766 |
. . . . . 6
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → 𝐴 ∈ On) |
| 13 | 12 | anim1i 615 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → (𝐴 ∈ On ∧ Lim 𝐴)) |
| 14 | | 0ellim 6421 |
. . . . . . 7
⊢ (Lim
𝐵 → ∅ ∈
𝐵) |
| 15 | 14 | adantl 481 |
. . . . . 6
⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → ∅ ∈ 𝐵) |
| 16 | 15 | ad3antlr 731 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → ∅ ∈ 𝐵) |
| 17 | | omlimcl 8595 |
. . . . 5
⊢ (((𝐵 ∈ On ∧ (𝐴 ∈ On ∧ Lim 𝐴)) ∧ ∅ ∈ 𝐵) → Lim (𝐵 ·o 𝐴)) |
| 18 | 11, 13, 16, 17 | syl21anc 837 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ Lim 𝐴) → Lim (𝐵 ·o 𝐴)) |
| 19 | 18 | ex 412 |
. . 3
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (Lim 𝐴 → Lim (𝐵 ·o 𝐴))) |
| 20 | 9, 19 | syld 47 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = ∪ 𝐴 → Lim (𝐵 ·o 𝐴))) |
| 21 | | onuni 7787 |
. . . . . . . . 9
⊢ (𝐴 ∈ On → ∪ 𝐴
∈ On) |
| 22 | 21, 10 | anim12ci 614 |
. . . . . . . 8
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ On ∧ ∪ 𝐴
∈ On)) |
| 23 | | omcl 8553 |
. . . . . . . 8
⊢ ((𝐵 ∈ On ∧ ∪ 𝐴
∈ On) → (𝐵
·o ∪ 𝐴) ∈ On) |
| 24 | 22, 23 | syl 17 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐵 ·o ∪ 𝐴)
∈ On) |
| 25 | | simpr 484 |
. . . . . . 7
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) |
| 26 | 24, 25 | jca 511 |
. . . . . 6
⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → ((𝐵 ·o ∪ 𝐴)
∈ On ∧ (𝐵 ∈
𝐶 ∧ Lim 𝐵))) |
| 27 | 26 | ad2antrr 726 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → ((𝐵 ·o ∪ 𝐴)
∈ On ∧ (𝐵 ∈
𝐶 ∧ Lim 𝐵))) |
| 28 | | oalimcl 8577 |
. . . . 5
⊢ (((𝐵 ·o ∪ 𝐴)
∈ On ∧ (𝐵 ∈
𝐶 ∧ Lim 𝐵)) → Lim ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) |
| 29 | 27, 28 | syl 17 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → Lim ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) |
| 30 | | simpr 484 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → 𝐴 = suc ∪ 𝐴) |
| 31 | 30 | oveq2d 7426 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ·o 𝐴) = (𝐵 ·o suc ∪ 𝐴)) |
| 32 | 22 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ∈ On ∧ ∪ 𝐴
∈ On)) |
| 33 | | omsuc 8543 |
. . . . . . 7
⊢ ((𝐵 ∈ On ∧ ∪ 𝐴
∈ On) → (𝐵
·o suc ∪ 𝐴) = ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) |
| 34 | 32, 33 | syl 17 |
. . . . . 6
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ·o suc ∪ 𝐴) =
((𝐵 ·o
∪ 𝐴) +o 𝐵)) |
| 35 | 31, 34 | eqtrd 2771 |
. . . . 5
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (𝐵 ·o 𝐴) = ((𝐵 ·o ∪ 𝐴)
+o 𝐵)) |
| 36 | | limeq 6369 |
. . . . 5
⊢ ((𝐵 ·o 𝐴) = ((𝐵 ·o ∪ 𝐴)
+o 𝐵) →
(Lim (𝐵
·o 𝐴)
↔ Lim ((𝐵
·o ∪ 𝐴) +o 𝐵))) |
| 37 | 35, 36 | syl 17 |
. . . 4
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → (Lim (𝐵 ·o 𝐴) ↔ Lim ((𝐵 ·o ∪ 𝐴)
+o 𝐵))) |
| 38 | 29, 37 | mpbird 257 |
. . 3
⊢ ((((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) ∧ 𝐴 = suc ∪ 𝐴) → Lim (𝐵 ·o 𝐴)) |
| 39 | 38 | ex 412 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = suc ∪ 𝐴 → Lim (𝐵 ·o 𝐴))) |
| 40 | | orduniorsuc 7829 |
. . 3
⊢ (Ord
𝐴 → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| 41 | 2, 40 | syl 17 |
. 2
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → (𝐴 = ∪ 𝐴 ∨ 𝐴 = suc ∪ 𝐴)) |
| 42 | 20, 39, 41 | mpjaod 860 |
1
⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) ∧ ∅ ∈ 𝐴) → Lim (𝐵 ·o 𝐴)) |