![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version |
Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6400 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ≠ wne 2946 ∅c0 4352 ∪ cuni 4931 Ord word 6394 Lim wlim 6396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-lim 6400 |
This theorem is referenced by: 0ellim 6458 limelon 6459 nlimsucg 7879 ordzsl 7882 limsuc 7886 limsssuc 7887 limomss 7908 trom 7912 limom 7919 tfr2b 8452 rdgsucg 8479 rdglimg 8481 rdglim2 8488 1ellim 8554 2ellim 8555 oesuclem 8581 odi 8635 omeulem1 8638 oelim2 8651 oeoalem 8652 oeoelem 8654 limenpsi 9218 limensuci 9219 ordtypelem3 9589 ordtypelem5 9591 ordtypelem6 9592 ordtypelem7 9593 ordtypelem9 9595 r1tr 9845 r1ordg 9847 r1ord3g 9848 r1pwss 9853 r1val1 9855 rankwflemb 9862 r1elwf 9865 rankr1ai 9867 rankr1ag 9871 rankr1bg 9872 unwf 9879 rankr1clem 9889 rankr1c 9890 rankval3b 9895 rankonidlem 9897 onssr1 9900 coflim 10330 cflim3 10331 cflim2 10332 cfss 10334 cfslb 10335 cfslbn 10336 cfslb2n 10337 r1limwun 10805 inar1 10844 oldlim 27943 rdgprc 35758 limsucncmpi 36411 limexissup 43243 limexissupab 43245 oaltublim 43252 omord2lim 43262 dflim5 43291 grur1cld 44201 |
Copyright terms: Public domain | W3C validator |