| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6362 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2933 ∅c0 4313 ∪ cuni 4888 Ord word 6356 Lim wlim 6358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6362 |
| This theorem is referenced by: 0ellim 6421 limelon 6422 nlimsucg 7842 ordzsl 7845 limsuc 7849 limsssuc 7850 limomss 7871 trom 7875 limom 7882 tfr2b 8415 rdgsucg 8442 rdglimg 8444 rdglim2 8451 1ellim 8515 2ellim 8516 oesuclem 8542 odi 8596 omeulem1 8599 oelim2 8612 oeoalem 8613 oeoelem 8615 limenpsi 9171 limensuci 9172 ordtypelem3 9539 ordtypelem5 9541 ordtypelem6 9542 ordtypelem7 9543 ordtypelem9 9545 r1tr 9795 r1ordg 9797 r1ord3g 9798 r1pwss 9803 r1val1 9805 rankwflemb 9812 r1elwf 9815 rankr1ai 9817 rankr1ag 9821 rankr1bg 9822 unwf 9829 rankr1clem 9839 rankr1c 9840 rankval3b 9845 rankonidlem 9847 onssr1 9850 coflim 10280 cflim3 10281 cflim2 10282 cfss 10284 cfslb 10285 cfslbn 10286 cfslb2n 10287 r1limwun 10755 inar1 10794 oldlim 27855 rdgprc 35817 limsucncmpi 36468 limexissup 43272 limexissupab 43274 oaltublim 43281 omord2lim 43291 dflim5 43320 grur1cld 44223 |
| Copyright terms: Public domain | W3C validator |