| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6337 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4296 ∪ cuni 4871 Ord word 6331 Lim wlim 6333 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6337 |
| This theorem is referenced by: limelon 6397 nlimsucg 7818 ordzsl 7821 limsuc 7825 limsssuc 7826 limomss 7847 trom 7851 limom 7858 tfr2b 8364 rdgsucg 8391 rdglimg 8393 rdglim2 8400 1ellim 8462 2ellim 8463 oesuclem 8489 odi 8543 omeulem1 8546 oelim2 8559 oeoalem 8560 oeoelem 8562 limenpsi 9116 limensuci 9117 ordtypelem3 9473 ordtypelem5 9475 ordtypelem6 9476 ordtypelem7 9477 ordtypelem9 9479 r1tr 9729 r1ordg 9731 r1ord3g 9732 r1pwss 9737 r1val1 9739 rankwflemb 9746 r1elwf 9749 rankr1ai 9751 rankr1ag 9755 rankr1bg 9756 unwf 9763 rankr1clem 9773 rankr1c 9774 rankval3b 9779 rankonidlem 9781 onssr1 9784 coflim 10214 cflim3 10215 cflim2 10216 cfss 10218 cfslb 10219 cfslbn 10220 cfslb2n 10221 r1limwun 10689 inar1 10728 oldlim 27798 rdgprc 35782 limsucncmpi 36433 limexissup 43270 limexissupab 43272 oaltublim 43279 omord2lim 43289 dflim5 43318 grur1cld 44221 |
| Copyright terms: Public domain | W3C validator |