Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version |
Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
Ref | Expression |
---|---|
limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6256 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | 1 | simp1bi 1143 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ≠ wne 2942 ∅c0 4253 ∪ cuni 4836 Ord word 6250 Lim wlim 6252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-lim 6256 |
This theorem is referenced by: 0ellim 6313 limelon 6314 nlimsucg 7664 ordzsl 7667 limsuc 7671 limsssuc 7672 limomss 7692 trom 7696 limom 7703 tfr2b 8198 rdgsucg 8225 rdglimg 8227 rdglim2 8234 oesuclem 8317 odi 8372 omeulem1 8375 oelim2 8388 oeoalem 8389 oeoelem 8391 limenpsi 8888 limensuci 8889 ordtypelem3 9209 ordtypelem5 9211 ordtypelem6 9212 ordtypelem7 9213 ordtypelem9 9215 r1tr 9465 r1ordg 9467 r1ord3g 9468 r1pwss 9473 r1val1 9475 rankwflemb 9482 r1elwf 9485 rankr1ai 9487 rankr1ag 9491 rankr1bg 9492 unwf 9499 rankr1clem 9509 rankr1c 9510 rankval3b 9515 rankonidlem 9517 onssr1 9520 coflim 9948 cflim3 9949 cflim2 9950 cfss 9952 cfslb 9953 cfslbn 9954 cfslb2n 9955 r1limwun 10423 inar1 10462 rdgprc 33676 oldlim 33996 limsucncmpi 34561 grur1cld 41739 |
Copyright terms: Public domain | W3C validator |