| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6325 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4292 ∪ cuni 4867 Ord word 6319 Lim wlim 6321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6325 |
| This theorem is referenced by: limelon 6385 nlimsucg 7798 ordzsl 7801 limsuc 7805 limsssuc 7806 limomss 7827 trom 7831 limom 7838 tfr2b 8341 rdgsucg 8368 rdglimg 8370 rdglim2 8377 1ellim 8439 2ellim 8440 oesuclem 8466 odi 8520 omeulem1 8523 oelim2 8536 oeoalem 8537 oeoelem 8539 limenpsi 9093 limensuci 9094 ordtypelem3 9449 ordtypelem5 9451 ordtypelem6 9452 ordtypelem7 9453 ordtypelem9 9455 r1tr 9705 r1ordg 9707 r1ord3g 9708 r1pwss 9713 r1val1 9715 rankwflemb 9722 r1elwf 9725 rankr1ai 9727 rankr1ag 9731 rankr1bg 9732 unwf 9739 rankr1clem 9749 rankr1c 9750 rankval3b 9755 rankonidlem 9757 onssr1 9760 coflim 10190 cflim3 10191 cflim2 10192 cfss 10194 cfslb 10195 cfslbn 10196 cfslb2n 10197 r1limwun 10665 inar1 10704 oldlim 27836 rdgprc 35775 limsucncmpi 36426 limexissup 43263 limexissupab 43265 oaltublim 43272 omord2lim 43282 dflim5 43311 grur1cld 44214 |
| Copyright terms: Public domain | W3C validator |