| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6311 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ≠ wne 2928 ∅c0 4280 ∪ cuni 4856 Ord word 6305 Lim wlim 6307 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6311 |
| This theorem is referenced by: limelon 6371 nlimsucg 7772 ordzsl 7775 limsuc 7779 limsssuc 7780 limomss 7801 trom 7805 limom 7812 tfr2b 8315 rdgsucg 8342 rdglimg 8344 rdglim2 8351 1ellim 8413 2ellim 8414 oesuclem 8440 odi 8494 omeulem1 8497 oelim2 8510 oeoalem 8511 oeoelem 8513 limenpsi 9065 limensuci 9066 ordtypelem3 9406 ordtypelem5 9408 ordtypelem6 9409 ordtypelem7 9410 ordtypelem9 9412 r1tr 9669 r1ordg 9671 r1ord3g 9672 r1pwss 9677 r1val1 9679 rankwflemb 9686 r1elwf 9689 rankr1ai 9691 rankr1ag 9695 rankr1bg 9696 unwf 9703 rankr1clem 9713 rankr1c 9714 rankval3b 9719 rankonidlem 9721 onssr1 9724 coflim 10152 cflim3 10153 cflim2 10154 cfss 10156 cfslb 10157 cfslbn 10158 cfslb2n 10159 r1limwun 10627 inar1 10666 oldlim 27832 rankfilimbi 35112 rankfilimb 35113 r1filimi 35114 rdgprc 35836 limsucncmpi 36489 limexissup 43373 limexissupab 43375 oaltublim 43382 omord2lim 43392 dflim5 43421 grur1cld 44324 |
| Copyright terms: Public domain | W3C validator |