| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6325 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4292 ∪ cuni 4867 Ord word 6319 Lim wlim 6321 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6325 |
| This theorem is referenced by: limelon 6385 nlimsucg 7798 ordzsl 7801 limsuc 7805 limsssuc 7806 limomss 7827 trom 7831 limom 7838 tfr2b 8341 rdgsucg 8368 rdglimg 8370 rdglim2 8377 1ellim 8439 2ellim 8440 oesuclem 8466 odi 8520 omeulem1 8523 oelim2 8536 oeoalem 8537 oeoelem 8539 limenpsi 9093 limensuci 9094 ordtypelem3 9449 ordtypelem5 9451 ordtypelem6 9452 ordtypelem7 9453 ordtypelem9 9455 r1tr 9707 r1ordg 9709 r1ord3g 9710 r1pwss 9715 r1val1 9717 rankwflemb 9724 r1elwf 9727 rankr1ai 9729 rankr1ag 9733 rankr1bg 9734 unwf 9741 rankr1clem 9751 rankr1c 9752 rankval3b 9757 rankonidlem 9759 onssr1 9762 coflim 10192 cflim3 10193 cflim2 10194 cfss 10196 cfslb 10197 cfslbn 10198 cfslb2n 10199 r1limwun 10667 inar1 10706 oldlim 27837 rdgprc 35776 limsucncmpi 36427 limexissup 43264 limexissupab 43266 oaltublim 43273 omord2lim 43283 dflim5 43312 grur1cld 44215 |
| Copyright terms: Public domain | W3C validator |