| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6312 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2925 ∅c0 4284 ∪ cuni 4858 Ord word 6306 Lim wlim 6308 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6312 |
| This theorem is referenced by: limelon 6372 nlimsucg 7775 ordzsl 7778 limsuc 7782 limsssuc 7783 limomss 7804 trom 7808 limom 7815 tfr2b 8318 rdgsucg 8345 rdglimg 8347 rdglim2 8354 1ellim 8416 2ellim 8417 oesuclem 8443 odi 8497 omeulem1 8500 oelim2 8513 oeoalem 8514 oeoelem 8516 limenpsi 9069 limensuci 9070 ordtypelem3 9412 ordtypelem5 9414 ordtypelem6 9415 ordtypelem7 9416 ordtypelem9 9418 r1tr 9672 r1ordg 9674 r1ord3g 9675 r1pwss 9680 r1val1 9682 rankwflemb 9689 r1elwf 9692 rankr1ai 9694 rankr1ag 9698 rankr1bg 9699 unwf 9706 rankr1clem 9716 rankr1c 9717 rankval3b 9722 rankonidlem 9724 onssr1 9727 coflim 10155 cflim3 10156 cflim2 10157 cfss 10159 cfslb 10160 cfslbn 10161 cfslb2n 10162 r1limwun 10630 inar1 10669 oldlim 27803 rdgprc 35788 limsucncmpi 36439 limexissup 43274 limexissupab 43276 oaltublim 43283 omord2lim 43293 dflim5 43322 grur1cld 44225 |
| Copyright terms: Public domain | W3C validator |