| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > limord | Structured version Visualization version GIF version | ||
| Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995.) |
| Ref | Expression |
|---|---|
| limord | ⊢ (Lim 𝐴 → Ord 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim 6340 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
| 2 | 1 | simp1bi 1145 | 1 ⊢ (Lim 𝐴 → Ord 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ≠ wne 2926 ∅c0 4299 ∪ cuni 4874 Ord word 6334 Lim wlim 6336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-lim 6340 |
| This theorem is referenced by: limelon 6400 nlimsucg 7821 ordzsl 7824 limsuc 7828 limsssuc 7829 limomss 7850 trom 7854 limom 7861 tfr2b 8367 rdgsucg 8394 rdglimg 8396 rdglim2 8403 1ellim 8465 2ellim 8466 oesuclem 8492 odi 8546 omeulem1 8549 oelim2 8562 oeoalem 8563 oeoelem 8565 limenpsi 9122 limensuci 9123 ordtypelem3 9480 ordtypelem5 9482 ordtypelem6 9483 ordtypelem7 9484 ordtypelem9 9486 r1tr 9736 r1ordg 9738 r1ord3g 9739 r1pwss 9744 r1val1 9746 rankwflemb 9753 r1elwf 9756 rankr1ai 9758 rankr1ag 9762 rankr1bg 9763 unwf 9770 rankr1clem 9780 rankr1c 9781 rankval3b 9786 rankonidlem 9788 onssr1 9791 coflim 10221 cflim3 10222 cflim2 10223 cfss 10225 cfslb 10226 cfslbn 10227 cfslb2n 10228 r1limwun 10696 inar1 10735 oldlim 27805 rdgprc 35789 limsucncmpi 36440 limexissup 43277 limexissupab 43279 oaltublim 43286 omord2lim 43296 dflim5 43325 grur1cld 44228 |
| Copyright terms: Public domain | W3C validator |