Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg2 Structured version   Visualization version   GIF version

Theorem dfrdg2 35818
Description: Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg2 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Distinct variable groups:   𝑓,𝐹,𝑥,𝑦   𝑓,𝐼,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem dfrdg2
Dummy variables 𝑔 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgeq2 8431 . . 3 (𝑖 = 𝐼 → rec(𝐹, 𝑖) = rec(𝐹, 𝐼))
2 ifeq1 4509 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
32eqeq2d 2747 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
43ralbidv 3164 . . . . . . 7 (𝑖 = 𝐼 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
54anbi2d 630 . . . . . 6 (𝑖 = 𝐼 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
65rexbidv 3165 . . . . 5 (𝑖 = 𝐼 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
76abbidv 2802 . . . 4 (𝑖 = 𝐼 → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
87unieqd 4901 . . 3 (𝑖 = 𝐼 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
91, 8eqeq12d 2752 . 2 (𝑖 = 𝐼 → (rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} ↔ rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}))
10 df-rdg 8429 . . 3 rec(𝐹, 𝑖) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
11 dfrecs3 8391 . . 3 recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
12 vex 3468 . . . . . . . . . . . . 13 𝑓 ∈ V
1312resex 6021 . . . . . . . . . . . 12 (𝑓𝑦) ∈ V
14 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ (𝑓𝑦) = ∅))
15 relres 5997 . . . . . . . . . . . . . . . 16 Rel (𝑓𝑦)
16 reldm0 5912 . . . . . . . . . . . . . . . 16 (Rel (𝑓𝑦) → ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅))
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅)
1814, 17bitrdi 287 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ dom (𝑓𝑦) = ∅))
19 dmeq 5888 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
20 limeq 6369 . . . . . . . . . . . . . . . 16 (dom 𝑔 = dom (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
22 rneq 5921 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → ran 𝑔 = ran (𝑓𝑦))
23 df-ima 5672 . . . . . . . . . . . . . . . . 17 (𝑓𝑦) = ran (𝑓𝑦)
2422, 23eqtr4di 2789 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
2524unieqd 4901 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
26 id 22 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → 𝑔 = (𝑓𝑦))
2719unieqd 4901 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
2826, 27fveq12d 6888 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → (𝑔 dom 𝑔) = ((𝑓𝑦)‘ dom (𝑓𝑦)))
2928fveq2d 6885 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))
3021, 25, 29ifbieq12d 4534 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
3118, 30ifbieq2d 4532 . . . . . . . . . . . . 13 (𝑔 = (𝑓𝑦) → if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
32 eqid 2736 . . . . . . . . . . . . 13 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
33 vex 3468 . . . . . . . . . . . . . 14 𝑖 ∈ V
34 imaexg 7914 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ V → (𝑓𝑦) ∈ V)
3512, 34ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑓𝑦) ∈ V
3635uniex 7740 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
37 fvex 6894 . . . . . . . . . . . . . . 15 (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) ∈ V
3836, 37ifex 4556 . . . . . . . . . . . . . 14 if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) ∈ V
3933, 38ifex 4556 . . . . . . . . . . . . 13 if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) ∈ V
4031, 32, 39fvmpt 6991 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
4113, 40ax-mp 5 . . . . . . . . . . 11 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
42 dmres 6004 . . . . . . . . . . . . 13 dom (𝑓𝑦) = (𝑦 ∩ dom 𝑓)
43 onelss 6399 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
4443imp 406 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
45443adant2 1131 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦𝑥)
46 fndm 6646 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
47463ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom 𝑓 = 𝑥)
4845, 47sseqtrrd 4001 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦 ⊆ dom 𝑓)
49 dfss2 3949 . . . . . . . . . . . . . 14 (𝑦 ⊆ dom 𝑓 ↔ (𝑦 ∩ dom 𝑓) = 𝑦)
5048, 49sylib 218 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → (𝑦 ∩ dom 𝑓) = 𝑦)
5142, 50eqtrid 2783 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom (𝑓𝑦) = 𝑦)
52 eqeq1 2740 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → (dom (𝑓𝑦) = ∅ ↔ 𝑦 = ∅))
53 limeq 6369 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (Lim dom (𝑓𝑦) ↔ Lim 𝑦))
54 unieq 4899 . . . . . . . . . . . . . . . . 17 (dom (𝑓𝑦) = 𝑦 dom (𝑓𝑦) = 𝑦)
5554fveq2d 6885 . . . . . . . . . . . . . . . 16 (dom (𝑓𝑦) = 𝑦 → ((𝑓𝑦)‘ dom (𝑓𝑦)) = ((𝑓𝑦)‘ 𝑦))
5655fveq2d 6885 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) = (𝐹‘((𝑓𝑦)‘ 𝑦)))
5753, 56ifbieq2d 4532 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
5852, 57ifbieq2d 4532 . . . . . . . . . . . . 13 (dom (𝑓𝑦) = 𝑦 → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))))
59 onelon 6382 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
60 eloni 6367 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Ord 𝑦)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
62613adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → Ord 𝑦)
63 ordzsl 7845 . . . . . . . . . . . . . . 15 (Ord 𝑦 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦))
64 iftrue 4511 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = 𝑖)
65 iftrue 4511 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = 𝑖)
6664, 65eqtr4d 2774 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
67 vex 3468 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
6867sucid 6441 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ suc 𝑧
69 fvres 6900 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ suc 𝑧 → ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧)
71 eloni 6367 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → Ord 𝑧)
72 ordunisuc 7831 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑧 suc 𝑧 = 𝑧)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ On → suc 𝑧 = 𝑧)
7473fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = ((𝑓 ↾ suc 𝑧)‘𝑧))
7573fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → (𝑓 suc 𝑧) = (𝑓𝑧))
7670, 74, 753eqtr4a 2797 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = (𝑓 suc 𝑧))
7776fveq2d 6885 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)) = (𝐹‘(𝑓 suc 𝑧)))
78 nsuceq0 6442 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑧 ≠ ∅
7978neii 2935 . . . . . . . . . . . . . . . . . . . . 21 ¬ suc 𝑧 = ∅
8079iffalsei 4515 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
81 nlimsucg 7842 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ V → ¬ Lim suc 𝑧)
82 iffalse 4514 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
8367, 81, 82mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8480, 83eqtri 2759 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8579iffalsei 4515 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
86 iffalse 4514 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
8767, 81, 86mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
8885, 87eqtri 2759 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
8977, 84, 883eqtr4g 2796 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
90 eqeq1 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
91 limeq 6369 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
92 reseq2 5966 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 → (𝑓𝑦) = (𝑓 ↾ suc 𝑧))
93 unieq 4899 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
9492, 93fveq12d 6888 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → ((𝑓𝑦)‘ 𝑦) = ((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
9594fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘((𝑓𝑦)‘ 𝑦)) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
9691, 95ifbieq2d 4532 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))))
9790, 96ifbieq2d 4532 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))))
9893fveq2d 6885 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
9998fveq2d 6885 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
10091, 99ifbieq2d 4532 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
10190, 100ifbieq2d 4532 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
10297, 101eqeq12d 2752 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑧 → (if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))))
10389, 102syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ On → (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
104103rexlimiv 3135 . . . . . . . . . . . . . . . 16 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
105 iftrue 4511 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = (𝑓𝑦))
106 df-lim 6362 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
107106simp2bi 1146 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑦𝑦 ≠ ∅)
108107neneqd 2938 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑦 → ¬ 𝑦 = ∅)
109108iffalsed 4516 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
110 iftrue 4511 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
111105, 109, 1103eqtr4d 2781 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
112108iffalsed 4516 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
113111, 112eqtr4d 2774 . . . . . . . . . . . . . . . 16 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11466, 104, 1133jaoi 1430 . . . . . . . . . . . . . . 15 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11563, 114sylbi 217 . . . . . . . . . . . . . 14 (Ord 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11662, 115syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11758, 116sylan9eqr 2793 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) ∧ dom (𝑓𝑦) = 𝑦) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11851, 117mpdan 687 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11941, 118eqtrid 2783 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
120119eqeq2d 2747 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1211203expa 1118 . . . . . . . 8 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) ∧ 𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
122121ralbidva 3162 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
123122pm5.32da 579 . . . . . 6 (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
124123rexbiia 3082 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
125124abbii 2803 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
126125unieqi 4900 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
12710, 11, 1263eqtri 2763 . 2 rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
1289, 127vtoclg 3538 1 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  Vcvv 3464  cin 3930  wss 3931  c0 4313  ifcif 4505   cuni 4888  cmpt 5206  dom cdm 5659  ran crn 5660  cres 5661  cima 5662  Rel wrel 5664  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359   Fn wfn 6531  cfv 6536  recscrecs 8389  reccrdg 8428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7413  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429
This theorem is referenced by:  dfrdg3  35819
  Copyright terms: Public domain W3C validator