Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg2 Structured version   Visualization version   GIF version

Theorem dfrdg2 35860
Description: Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg2 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Distinct variable groups:   𝑓,𝐹,𝑥,𝑦   𝑓,𝐼,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem dfrdg2
Dummy variables 𝑔 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgeq2 8339 . . 3 (𝑖 = 𝐼 → rec(𝐹, 𝑖) = rec(𝐹, 𝐼))
2 ifeq1 4480 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
32eqeq2d 2744 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
43ralbidv 3156 . . . . . . 7 (𝑖 = 𝐼 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
54anbi2d 630 . . . . . 6 (𝑖 = 𝐼 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
65rexbidv 3157 . . . . 5 (𝑖 = 𝐼 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
76abbidv 2799 . . . 4 (𝑖 = 𝐼 → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
87unieqd 4873 . . 3 (𝑖 = 𝐼 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
91, 8eqeq12d 2749 . 2 (𝑖 = 𝐼 → (rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} ↔ rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}))
10 df-rdg 8337 . . 3 rec(𝐹, 𝑖) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
11 dfrecs3 8300 . . 3 recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
12 vex 3441 . . . . . . . . . . . . 13 𝑓 ∈ V
1312resex 5984 . . . . . . . . . . . 12 (𝑓𝑦) ∈ V
14 eqeq1 2737 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ (𝑓𝑦) = ∅))
15 relres 5960 . . . . . . . . . . . . . . . 16 Rel (𝑓𝑦)
16 reldm0 5874 . . . . . . . . . . . . . . . 16 (Rel (𝑓𝑦) → ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅))
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅)
1814, 17bitrdi 287 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ dom (𝑓𝑦) = ∅))
19 dmeq 5849 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
20 limeq 6325 . . . . . . . . . . . . . . . 16 (dom 𝑔 = dom (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
22 rneq 5882 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → ran 𝑔 = ran (𝑓𝑦))
23 df-ima 5634 . . . . . . . . . . . . . . . . 17 (𝑓𝑦) = ran (𝑓𝑦)
2422, 23eqtr4di 2786 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
2524unieqd 4873 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
26 id 22 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → 𝑔 = (𝑓𝑦))
2719unieqd 4873 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
2826, 27fveq12d 6837 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → (𝑔 dom 𝑔) = ((𝑓𝑦)‘ dom (𝑓𝑦)))
2928fveq2d 6834 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))
3021, 25, 29ifbieq12d 4505 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
3118, 30ifbieq2d 4503 . . . . . . . . . . . . 13 (𝑔 = (𝑓𝑦) → if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
32 eqid 2733 . . . . . . . . . . . . 13 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
33 vex 3441 . . . . . . . . . . . . . 14 𝑖 ∈ V
34 imaexg 7851 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ V → (𝑓𝑦) ∈ V)
3512, 34ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑓𝑦) ∈ V
3635uniex 7682 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
37 fvex 6843 . . . . . . . . . . . . . . 15 (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) ∈ V
3836, 37ifex 4527 . . . . . . . . . . . . . 14 if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) ∈ V
3933, 38ifex 4527 . . . . . . . . . . . . 13 if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) ∈ V
4031, 32, 39fvmpt 6937 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
4113, 40ax-mp 5 . . . . . . . . . . 11 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
42 dmres 5967 . . . . . . . . . . . . 13 dom (𝑓𝑦) = (𝑦 ∩ dom 𝑓)
43 onelss 6355 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
4443imp 406 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
45443adant2 1131 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦𝑥)
46 fndm 6591 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
47463ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom 𝑓 = 𝑥)
4845, 47sseqtrrd 3968 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦 ⊆ dom 𝑓)
49 dfss2 3916 . . . . . . . . . . . . . 14 (𝑦 ⊆ dom 𝑓 ↔ (𝑦 ∩ dom 𝑓) = 𝑦)
5048, 49sylib 218 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → (𝑦 ∩ dom 𝑓) = 𝑦)
5142, 50eqtrid 2780 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom (𝑓𝑦) = 𝑦)
52 eqeq1 2737 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → (dom (𝑓𝑦) = ∅ ↔ 𝑦 = ∅))
53 limeq 6325 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (Lim dom (𝑓𝑦) ↔ Lim 𝑦))
54 unieq 4871 . . . . . . . . . . . . . . . . 17 (dom (𝑓𝑦) = 𝑦 dom (𝑓𝑦) = 𝑦)
5554fveq2d 6834 . . . . . . . . . . . . . . . 16 (dom (𝑓𝑦) = 𝑦 → ((𝑓𝑦)‘ dom (𝑓𝑦)) = ((𝑓𝑦)‘ 𝑦))
5655fveq2d 6834 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) = (𝐹‘((𝑓𝑦)‘ 𝑦)))
5753, 56ifbieq2d 4503 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
5852, 57ifbieq2d 4503 . . . . . . . . . . . . 13 (dom (𝑓𝑦) = 𝑦 → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))))
59 onelon 6338 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
60 eloni 6323 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Ord 𝑦)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
62613adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → Ord 𝑦)
63 ordzsl 7783 . . . . . . . . . . . . . . 15 (Ord 𝑦 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦))
64 iftrue 4482 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = 𝑖)
65 iftrue 4482 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = 𝑖)
6664, 65eqtr4d 2771 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
67 vex 3441 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
6867sucid 6397 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ suc 𝑧
69 fvres 6849 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ suc 𝑧 → ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧)
71 eloni 6323 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → Ord 𝑧)
72 ordunisuc 7770 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑧 suc 𝑧 = 𝑧)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ On → suc 𝑧 = 𝑧)
7473fveq2d 6834 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = ((𝑓 ↾ suc 𝑧)‘𝑧))
7573fveq2d 6834 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → (𝑓 suc 𝑧) = (𝑓𝑧))
7670, 74, 753eqtr4a 2794 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = (𝑓 suc 𝑧))
7776fveq2d 6834 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)) = (𝐹‘(𝑓 suc 𝑧)))
78 nsuceq0 6398 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑧 ≠ ∅
7978neii 2931 . . . . . . . . . . . . . . . . . . . . 21 ¬ suc 𝑧 = ∅
8079iffalsei 4486 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
81 nlimsucg 7780 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ V → ¬ Lim suc 𝑧)
82 iffalse 4485 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
8367, 81, 82mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8480, 83eqtri 2756 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8579iffalsei 4486 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
86 iffalse 4485 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
8767, 81, 86mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
8885, 87eqtri 2756 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
8977, 84, 883eqtr4g 2793 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
90 eqeq1 2737 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
91 limeq 6325 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
92 reseq2 5929 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 → (𝑓𝑦) = (𝑓 ↾ suc 𝑧))
93 unieq 4871 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
9492, 93fveq12d 6837 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → ((𝑓𝑦)‘ 𝑦) = ((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
9594fveq2d 6834 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘((𝑓𝑦)‘ 𝑦)) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
9691, 95ifbieq2d 4503 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))))
9790, 96ifbieq2d 4503 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))))
9893fveq2d 6834 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
9998fveq2d 6834 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
10091, 99ifbieq2d 4503 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
10190, 100ifbieq2d 4503 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
10297, 101eqeq12d 2749 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑧 → (if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))))
10389, 102syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ On → (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
104103rexlimiv 3127 . . . . . . . . . . . . . . . 16 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
105 iftrue 4482 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = (𝑓𝑦))
106 df-lim 6318 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
107106simp2bi 1146 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑦𝑦 ≠ ∅)
108107neneqd 2934 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑦 → ¬ 𝑦 = ∅)
109108iffalsed 4487 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
110 iftrue 4482 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
111105, 109, 1103eqtr4d 2778 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
112108iffalsed 4487 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
113111, 112eqtr4d 2771 . . . . . . . . . . . . . . . 16 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11466, 104, 1133jaoi 1430 . . . . . . . . . . . . . . 15 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11563, 114sylbi 217 . . . . . . . . . . . . . 14 (Ord 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11662, 115syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11758, 116sylan9eqr 2790 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) ∧ dom (𝑓𝑦) = 𝑦) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11851, 117mpdan 687 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11941, 118eqtrid 2780 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
120119eqeq2d 2744 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1211203expa 1118 . . . . . . . 8 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) ∧ 𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
122121ralbidva 3154 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
123122pm5.32da 579 . . . . . 6 (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
124123rexbiia 3078 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
125124abbii 2800 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
126125unieqi 4872 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
12710, 11, 1263eqtri 2760 . 2 rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
1289, 127vtoclg 3508 1 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2113  {cab 2711  wne 2929  wral 3048  wrex 3057  Vcvv 3437  cin 3897  wss 3898  c0 4282  ifcif 4476   cuni 4860  cmpt 5176  dom cdm 5621  ran crn 5622  cres 5623  cima 5624  Rel wrel 5626  Ord word 6312  Oncon0 6313  Lim wlim 6314  suc csuc 6315   Fn wfn 6483  cfv 6488  recscrecs 8298  reccrdg 8336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-fo 6494  df-fv 6496  df-ov 7357  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337
This theorem is referenced by:  dfrdg3  35861
  Copyright terms: Public domain W3C validator