Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfrdg2 Structured version   Visualization version   GIF version

Theorem dfrdg2 35797
Description: Alternate definition of the recursive function generator when 𝐼 is a set. (Contributed by Scott Fenton, 26-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
dfrdg2 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Distinct variable groups:   𝑓,𝐹,𝑥,𝑦   𝑓,𝐼,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑓)

Proof of Theorem dfrdg2
Dummy variables 𝑔 𝑖 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rdgeq2 8453 . . 3 (𝑖 = 𝐼 → rec(𝐹, 𝑖) = rec(𝐹, 𝐼))
2 ifeq1 4528 . . . . . . . . 9 (𝑖 = 𝐼 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
32eqeq2d 2747 . . . . . . . 8 (𝑖 = 𝐼 → ((𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
43ralbidv 3177 . . . . . . 7 (𝑖 = 𝐼 → (∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
54anbi2d 630 . . . . . 6 (𝑖 = 𝐼 → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
65rexbidv 3178 . . . . 5 (𝑖 = 𝐼 → (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
76abbidv 2807 . . . 4 (𝑖 = 𝐼 → {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
87unieqd 4919 . . 3 (𝑖 = 𝐼 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
91, 8eqeq12d 2752 . 2 (𝑖 = 𝐼 → (rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))} ↔ rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}))
10 df-rdg 8451 . . 3 rec(𝐹, 𝑖) = recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))))
11 dfrecs3 8413 . . 3 recs((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))}
12 vex 3483 . . . . . . . . . . . . 13 𝑓 ∈ V
1312resex 6046 . . . . . . . . . . . 12 (𝑓𝑦) ∈ V
14 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ (𝑓𝑦) = ∅))
15 relres 6022 . . . . . . . . . . . . . . . 16 Rel (𝑓𝑦)
16 reldm0 5937 . . . . . . . . . . . . . . . 16 (Rel (𝑓𝑦) → ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅))
1715, 16ax-mp 5 . . . . . . . . . . . . . . 15 ((𝑓𝑦) = ∅ ↔ dom (𝑓𝑦) = ∅)
1814, 17bitrdi 287 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → (𝑔 = ∅ ↔ dom (𝑓𝑦) = ∅))
19 dmeq 5913 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
20 limeq 6395 . . . . . . . . . . . . . . . 16 (dom 𝑔 = dom (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
2119, 20syl 17 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (Lim dom 𝑔 ↔ Lim dom (𝑓𝑦)))
22 rneq 5946 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → ran 𝑔 = ran (𝑓𝑦))
23 df-ima 5697 . . . . . . . . . . . . . . . . 17 (𝑓𝑦) = ran (𝑓𝑦)
2422, 23eqtr4di 2794 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
2524unieqd 4919 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → ran 𝑔 = (𝑓𝑦))
26 id 22 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → 𝑔 = (𝑓𝑦))
2719unieqd 4919 . . . . . . . . . . . . . . . . 17 (𝑔 = (𝑓𝑦) → dom 𝑔 = dom (𝑓𝑦))
2826, 27fveq12d 6912 . . . . . . . . . . . . . . . 16 (𝑔 = (𝑓𝑦) → (𝑔 dom 𝑔) = ((𝑓𝑦)‘ dom (𝑓𝑦)))
2928fveq2d 6909 . . . . . . . . . . . . . . 15 (𝑔 = (𝑓𝑦) → (𝐹‘(𝑔 dom 𝑔)) = (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))
3021, 25, 29ifbieq12d 4553 . . . . . . . . . . . . . 14 (𝑔 = (𝑓𝑦) → if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))) = if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
3118, 30ifbieq2d 4551 . . . . . . . . . . . . 13 (𝑔 = (𝑓𝑦) → if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
32 eqid 2736 . . . . . . . . . . . . 13 (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔))))) = (𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))
33 vex 3483 . . . . . . . . . . . . . 14 𝑖 ∈ V
34 imaexg 7936 . . . . . . . . . . . . . . . . 17 (𝑓 ∈ V → (𝑓𝑦) ∈ V)
3512, 34ax-mp 5 . . . . . . . . . . . . . . . 16 (𝑓𝑦) ∈ V
3635uniex 7762 . . . . . . . . . . . . . . 15 (𝑓𝑦) ∈ V
37 fvex 6918 . . . . . . . . . . . . . . 15 (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) ∈ V
3836, 37ifex 4575 . . . . . . . . . . . . . 14 if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) ∈ V
3933, 38ifex 4575 . . . . . . . . . . . . 13 if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) ∈ V
4031, 32, 39fvmpt 7015 . . . . . . . . . . . 12 ((𝑓𝑦) ∈ V → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))))
4113, 40ax-mp 5 . . . . . . . . . . 11 ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))))
42 dmres 6029 . . . . . . . . . . . . 13 dom (𝑓𝑦) = (𝑦 ∩ dom 𝑓)
43 onelss 6425 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ On → (𝑦𝑥𝑦𝑥))
4443imp 406 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦𝑥)
45443adant2 1131 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦𝑥)
46 fndm 6670 . . . . . . . . . . . . . . . 16 (𝑓 Fn 𝑥 → dom 𝑓 = 𝑥)
47463ad2ant2 1134 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom 𝑓 = 𝑥)
4845, 47sseqtrrd 4020 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → 𝑦 ⊆ dom 𝑓)
49 dfss2 3968 . . . . . . . . . . . . . 14 (𝑦 ⊆ dom 𝑓 ↔ (𝑦 ∩ dom 𝑓) = 𝑦)
5048, 49sylib 218 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → (𝑦 ∩ dom 𝑓) = 𝑦)
5142, 50eqtrid 2788 . . . . . . . . . . . 12 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → dom (𝑓𝑦) = 𝑦)
52 eqeq1 2740 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → (dom (𝑓𝑦) = ∅ ↔ 𝑦 = ∅))
53 limeq 6395 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (Lim dom (𝑓𝑦) ↔ Lim 𝑦))
54 unieq 4917 . . . . . . . . . . . . . . . . 17 (dom (𝑓𝑦) = 𝑦 dom (𝑓𝑦) = 𝑦)
5554fveq2d 6909 . . . . . . . . . . . . . . . 16 (dom (𝑓𝑦) = 𝑦 → ((𝑓𝑦)‘ dom (𝑓𝑦)) = ((𝑓𝑦)‘ 𝑦))
5655fveq2d 6909 . . . . . . . . . . . . . . 15 (dom (𝑓𝑦) = 𝑦 → (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))) = (𝐹‘((𝑓𝑦)‘ 𝑦)))
5753, 56ifbieq2d 4551 . . . . . . . . . . . . . 14 (dom (𝑓𝑦) = 𝑦 → if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
5852, 57ifbieq2d 4551 . . . . . . . . . . . . 13 (dom (𝑓𝑦) = 𝑦 → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))))
59 onelon 6408 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
60 eloni 6393 . . . . . . . . . . . . . . . 16 (𝑦 ∈ On → Ord 𝑦)
6159, 60syl 17 . . . . . . . . . . . . . . 15 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
62613adant2 1131 . . . . . . . . . . . . . 14 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → Ord 𝑦)
63 ordzsl 7867 . . . . . . . . . . . . . . 15 (Ord 𝑦 ↔ (𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦))
64 iftrue 4530 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = 𝑖)
65 iftrue 4530 . . . . . . . . . . . . . . . . 17 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = 𝑖)
6664, 65eqtr4d 2779 . . . . . . . . . . . . . . . 16 (𝑦 = ∅ → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
67 vex 3483 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧 ∈ V
6867sucid 6465 . . . . . . . . . . . . . . . . . . . . . 22 𝑧 ∈ suc 𝑧
69 fvres 6924 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ suc 𝑧 → ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧))
7068, 69ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓 ↾ suc 𝑧)‘𝑧) = (𝑓𝑧)
71 eloni 6393 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ On → Ord 𝑧)
72 ordunisuc 7853 . . . . . . . . . . . . . . . . . . . . . . 23 (Ord 𝑧 suc 𝑧 = 𝑧)
7371, 72syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝑧 ∈ On → suc 𝑧 = 𝑧)
7473fveq2d 6909 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = ((𝑓 ↾ suc 𝑧)‘𝑧))
7573fveq2d 6909 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ On → (𝑓 suc 𝑧) = (𝑓𝑧))
7670, 74, 753eqtr4a 2802 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ On → ((𝑓 ↾ suc 𝑧)‘ suc 𝑧) = (𝑓 suc 𝑧))
7776fveq2d 6909 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ On → (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)) = (𝐹‘(𝑓 suc 𝑧)))
78 nsuceq0 6466 . . . . . . . . . . . . . . . . . . . . . 22 suc 𝑧 ≠ ∅
7978neii 2941 . . . . . . . . . . . . . . . . . . . . 21 ¬ suc 𝑧 = ∅
8079iffalsei 4534 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
81 nlimsucg 7864 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ V → ¬ Lim suc 𝑧)
82 iffalse 4533 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
8367, 81, 82mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8480, 83eqtri 2764 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
8579iffalsei 4534 . . . . . . . . . . . . . . . . . . . 20 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))
86 iffalse 4533 . . . . . . . . . . . . . . . . . . . . 21 (¬ Lim suc 𝑧 → if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧)))
8767, 81, 86mp2b 10 . . . . . . . . . . . . . . . . . . . 20 if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))) = (𝐹‘(𝑓 suc 𝑧))
8885, 87eqtri 2764 . . . . . . . . . . . . . . . . . . 19 if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))) = (𝐹‘(𝑓 suc 𝑧))
8977, 84, 883eqtr4g 2801 . . . . . . . . . . . . . . . . . 18 (𝑧 ∈ On → if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
90 eqeq1 2740 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → (𝑦 = ∅ ↔ suc 𝑧 = ∅))
91 limeq 6395 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (Lim 𝑦 ↔ Lim suc 𝑧))
92 reseq2 5991 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 → (𝑓𝑦) = (𝑓 ↾ suc 𝑧))
93 unieq 4917 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 = suc 𝑧 𝑦 = suc 𝑧)
9492, 93fveq12d 6912 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → ((𝑓𝑦)‘ 𝑦) = ((𝑓 ↾ suc 𝑧)‘ suc 𝑧))
9594fveq2d 6909 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘((𝑓𝑦)‘ 𝑦)) = (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))
9691, 95ifbieq2d 4551 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧))))
9790, 96ifbieq2d 4551 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))))
9893fveq2d 6909 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = suc 𝑧 → (𝑓 𝑦) = (𝑓 suc 𝑧))
9998fveq2d 6909 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = suc 𝑧 → (𝐹‘(𝑓 𝑦)) = (𝐹‘(𝑓 suc 𝑧)))
10091, 99ifbieq2d 4551 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = suc 𝑧 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))
10190, 100ifbieq2d 4551 . . . . . . . . . . . . . . . . . . 19 (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧)))))
10297, 101eqeq12d 2752 . . . . . . . . . . . . . . . . . 18 (𝑦 = suc 𝑧 → (if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) ↔ if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘((𝑓 ↾ suc 𝑧)‘ suc 𝑧)))) = if(suc 𝑧 = ∅, 𝑖, if(Lim suc 𝑧, (𝑓𝑦), (𝐹‘(𝑓 suc 𝑧))))))
10389, 102syl5ibrcom 247 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ On → (𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
104103rexlimiv 3147 . . . . . . . . . . . . . . . 16 (∃𝑧 ∈ On 𝑦 = suc 𝑧 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
105 iftrue 4530 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))) = (𝑓𝑦))
106 df-lim 6388 . . . . . . . . . . . . . . . . . . . . 21 (Lim 𝑦 ↔ (Ord 𝑦𝑦 ≠ ∅ ∧ 𝑦 = 𝑦))
107106simp2bi 1146 . . . . . . . . . . . . . . . . . . . 20 (Lim 𝑦𝑦 ≠ ∅)
108107neneqd 2944 . . . . . . . . . . . . . . . . . . 19 (Lim 𝑦 → ¬ 𝑦 = ∅)
109108iffalsed 4535 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦))))
110 iftrue 4530 . . . . . . . . . . . . . . . . . 18 (Lim 𝑦 → if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))) = (𝑓𝑦))
111105, 109, 1103eqtr4d 2786 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
112108iffalsed 4535 . . . . . . . . . . . . . . . . 17 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))) = if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))
113111, 112eqtr4d 2779 . . . . . . . . . . . . . . . 16 (Lim 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11466, 104, 1133jaoi 1429 . . . . . . . . . . . . . . 15 ((𝑦 = ∅ ∨ ∃𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11563, 114sylbi 217 . . . . . . . . . . . . . 14 (Ord 𝑦 → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11662, 115syl 17 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ 𝑦)))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11758, 116sylan9eqr 2798 . . . . . . . . . . . 12 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) ∧ dom (𝑓𝑦) = 𝑦) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11851, 117mpdan 687 . . . . . . . . . . 11 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → if(dom (𝑓𝑦) = ∅, 𝑖, if(Lim dom (𝑓𝑦), (𝑓𝑦), (𝐹‘((𝑓𝑦)‘ dom (𝑓𝑦))))) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
11941, 118eqtrid 2788 . . . . . . . . . 10 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))
120119eqeq2d 2747 . . . . . . . . 9 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
1211203expa 1118 . . . . . . . 8 (((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) ∧ 𝑦𝑥) → ((𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
122121ralbidva 3175 . . . . . . 7 ((𝑥 ∈ On ∧ 𝑓 Fn 𝑥) → (∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)) ↔ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
123122pm5.32da 579 . . . . . 6 (𝑥 ∈ On → ((𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))))
124123rexbiia 3091 . . . . 5 (∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦))) ↔ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦))))))
125124abbii 2808 . . . 4 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
126125unieqi 4918 . . 3 {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = ((𝑔 ∈ V ↦ if(𝑔 = ∅, 𝑖, if(Lim dom 𝑔, ran 𝑔, (𝐹‘(𝑔 dom 𝑔)))))‘(𝑓𝑦)))} = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
12710, 11, 1263eqtri 2768 . 2 rec(𝐹, 𝑖) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝑖, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))}
1289, 127vtoclg 3553 1 (𝐼𝑉 → rec(𝐹, 𝐼) = {𝑓 ∣ ∃𝑥 ∈ On (𝑓 Fn 𝑥 ∧ ∀𝑦𝑥 (𝑓𝑦) = if(𝑦 = ∅, 𝐼, if(Lim 𝑦, (𝑓𝑦), (𝐹‘(𝑓 𝑦)))))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1539  wcel 2107  {cab 2713  wne 2939  wral 3060  wrex 3069  Vcvv 3479  cin 3949  wss 3950  c0 4332  ifcif 4524   cuni 4906  cmpt 5224  dom cdm 5684  ran crn 5685  cres 5686  cima 5687  Rel wrel 5689  Ord word 6382  Oncon0 6383  Lim wlim 6384  suc csuc 6385   Fn wfn 6555  cfv 6560  recscrecs 8411  reccrdg 8450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-fo 6566  df-fv 6568  df-ov 7435  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451
This theorem is referenced by:  dfrdg3  35798
  Copyright terms: Public domain W3C validator