Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dflim2 | Structured version Visualization version GIF version |
Description: An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
dflim2 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6174 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | ord0eln0 6223 | . . . . 5 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 2 | anbi1d 632 | . . . 4 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) |
4 | 3 | pm5.32i 578 | . . 3 ⊢ ((Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) |
5 | 3anass 1092 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴))) | |
6 | 3anass 1092 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) | |
7 | 4, 5, 6 | 3bitr4i 306 | . 2 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
8 | 1, 7 | bitr4i 281 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ∅c0 4225 ∪ cuni 4798 Ord word 6168 Lim wlim 6170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-tr 5139 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-ord 6172 df-lim 6174 |
This theorem is referenced by: nlim0 6227 dflim4 7562 |
Copyright terms: Public domain | W3C validator |