Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dflim2 | Structured version Visualization version GIF version |
Description: An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.) |
Ref | Expression |
---|---|
dflim2 | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim 6271 | . 2 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
2 | ord0eln0 6320 | . . . . 5 ⊢ (Ord 𝐴 → (∅ ∈ 𝐴 ↔ 𝐴 ≠ ∅)) | |
3 | 2 | anbi1d 630 | . . . 4 ⊢ (Ord 𝐴 → ((∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) |
4 | 3 | pm5.32i 575 | . . 3 ⊢ ((Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) |
5 | 3anass 1094 | . . 3 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴))) | |
6 | 3anass 1094 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴))) | |
7 | 4, 5, 6 | 3bitr4i 303 | . 2 ⊢ ((Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴) ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
8 | 1, 7 | bitr4i 277 | 1 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 ∪ cuni 4839 Ord word 6265 Lim wlim 6267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-lim 6271 |
This theorem is referenced by: nlim0 6324 dflim4 7695 nlimsuc 41048 |
Copyright terms: Public domain | W3C validator |