MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dflim2 Structured version   Visualization version   GIF version

Theorem dflim2 6359
Description: An alternate definition of a limit ordinal. (Contributed by NM, 4-Nov-2004.)
Assertion
Ref Expression
dflim2 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))

Proof of Theorem dflim2
StepHypRef Expression
1 df-lim 6306 . 2 (Lim 𝐴 ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
2 ord0eln0 6357 . . . . 5 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
32anbi1d 631 . . . 4 (Ord 𝐴 → ((∅ ∈ 𝐴𝐴 = 𝐴) ↔ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
43pm5.32i 574 . . 3 ((Ord 𝐴 ∧ (∅ ∈ 𝐴𝐴 = 𝐴)) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
5 3anass 1094 . . 3 ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (∅ ∈ 𝐴𝐴 = 𝐴)))
6 3anass 1094 . . 3 ((Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴) ↔ (Ord 𝐴 ∧ (𝐴 ≠ ∅ ∧ 𝐴 = 𝐴)))
74, 5, 63bitr4i 303 . 2 ((Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴) ↔ (Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴))
81, 7bitr4i 278 1 (Lim 𝐴 ↔ (Ord 𝐴 ∧ ∅ ∈ 𝐴𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  c0 4278   cuni 4854  Ord word 6300  Lim wlim 6302
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-lim 6306
This theorem is referenced by:  nlim0  6361  0ellim  6365  dflim4  7773  nlimsuc  43474
  Copyright terms: Public domain W3C validator