| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfuni | Structured version Visualization version GIF version | ||
| Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| hfuni | ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankuni 9792 | . . 3 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
| 2 | rankon 9724 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
| 3 | ontr 6431 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ On → Tr (rank‘𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Tr (rank‘𝐴) |
| 5 | df-tr 5210 | . . . . 5 ⊢ (Tr (rank‘𝐴) ↔ ∪ (rank‘𝐴) ⊆ (rank‘𝐴)) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ∪ (rank‘𝐴) ⊆ (rank‘𝐴) |
| 7 | elhf2g 36137 | . . . . 5 ⊢ (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
| 8 | 7 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω) |
| 9 | rankon 9724 | . . . . . . 7 ⊢ (rank‘∪ 𝐴) ∈ On | |
| 10 | 1, 9 | eqeltrri 2825 | . . . . . 6 ⊢ ∪ (rank‘𝐴) ∈ On |
| 11 | 10 | onordi 6433 | . . . . 5 ⊢ Ord ∪ (rank‘𝐴) |
| 12 | ordom 7832 | . . . . 5 ⊢ Ord ω | |
| 13 | ordtr2 6365 | . . . . 5 ⊢ ((Ord ∪ (rank‘𝐴) ∧ Ord ω) → ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω) |
| 15 | 6, 8, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ (rank‘𝐴) ∈ ω) |
| 16 | 1, 15 | eqeltrid 2832 | . 2 ⊢ (𝐴 ∈ Hf → (rank‘∪ 𝐴) ∈ ω) |
| 17 | uniexg 7696 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ V) | |
| 18 | elhf2g 36137 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ Hf → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) |
| 20 | 16, 19 | mpbird 257 | 1 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 ∪ cuni 4867 Tr wtr 5209 Ord word 6319 Oncon0 6320 ‘cfv 6499 ωcom 7822 rankcrnk 9692 Hf chf 36133 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-reg 9521 ax-inf2 9570 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-r1 9693 df-rank 9694 df-hf 36134 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |