| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfuni | Structured version Visualization version GIF version | ||
| Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| hfuni | ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankuni 9816 | . . 3 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
| 2 | rankon 9748 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
| 3 | ontr 6443 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ On → Tr (rank‘𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Tr (rank‘𝐴) |
| 5 | df-tr 5215 | . . . . 5 ⊢ (Tr (rank‘𝐴) ↔ ∪ (rank‘𝐴) ⊆ (rank‘𝐴)) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ∪ (rank‘𝐴) ⊆ (rank‘𝐴) |
| 7 | elhf2g 36164 | . . . . 5 ⊢ (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
| 8 | 7 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω) |
| 9 | rankon 9748 | . . . . . . 7 ⊢ (rank‘∪ 𝐴) ∈ On | |
| 10 | 1, 9 | eqeltrri 2825 | . . . . . 6 ⊢ ∪ (rank‘𝐴) ∈ On |
| 11 | 10 | onordi 6445 | . . . . 5 ⊢ Ord ∪ (rank‘𝐴) |
| 12 | ordom 7852 | . . . . 5 ⊢ Ord ω | |
| 13 | ordtr2 6377 | . . . . 5 ⊢ ((Ord ∪ (rank‘𝐴) ∧ Ord ω) → ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω) |
| 15 | 6, 8, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ (rank‘𝐴) ∈ ω) |
| 16 | 1, 15 | eqeltrid 2832 | . 2 ⊢ (𝐴 ∈ Hf → (rank‘∪ 𝐴) ∈ ω) |
| 17 | uniexg 7716 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ V) | |
| 18 | elhf2g 36164 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ Hf → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) |
| 20 | 16, 19 | mpbird 257 | 1 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ∪ cuni 4871 Tr wtr 5214 Ord word 6331 Oncon0 6332 ‘cfv 6511 ωcom 7842 rankcrnk 9716 Hf chf 36160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-reg 9545 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-r1 9717 df-rank 9718 df-hf 36161 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |