| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hfuni | Structured version Visualization version GIF version | ||
| Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
| Ref | Expression |
|---|---|
| hfuni | ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankuni 9877 | . . 3 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
| 2 | rankon 9809 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
| 3 | ontr 6463 | . . . . . 6 ⊢ ((rank‘𝐴) ∈ On → Tr (rank‘𝐴)) | |
| 4 | 2, 3 | ax-mp 5 | . . . . 5 ⊢ Tr (rank‘𝐴) |
| 5 | df-tr 5230 | . . . . 5 ⊢ (Tr (rank‘𝐴) ↔ ∪ (rank‘𝐴) ⊆ (rank‘𝐴)) | |
| 6 | 4, 5 | mpbi 230 | . . . 4 ⊢ ∪ (rank‘𝐴) ⊆ (rank‘𝐴) |
| 7 | elhf2g 36194 | . . . . 5 ⊢ (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
| 8 | 7 | ibi 267 | . . . 4 ⊢ (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω) |
| 9 | rankon 9809 | . . . . . . 7 ⊢ (rank‘∪ 𝐴) ∈ On | |
| 10 | 1, 9 | eqeltrri 2831 | . . . . . 6 ⊢ ∪ (rank‘𝐴) ∈ On |
| 11 | 10 | onordi 6465 | . . . . 5 ⊢ Ord ∪ (rank‘𝐴) |
| 12 | ordom 7871 | . . . . 5 ⊢ Ord ω | |
| 13 | ordtr2 6397 | . . . . 5 ⊢ ((Ord ∪ (rank‘𝐴) ∧ Ord ω) → ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω)) | |
| 14 | 11, 12, 13 | mp2an 692 | . . . 4 ⊢ ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω) |
| 15 | 6, 8, 14 | sylancr 587 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ (rank‘𝐴) ∈ ω) |
| 16 | 1, 15 | eqeltrid 2838 | . 2 ⊢ (𝐴 ∈ Hf → (rank‘∪ 𝐴) ∈ ω) |
| 17 | uniexg 7734 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ V) | |
| 18 | elhf2g 36194 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) | |
| 19 | 17, 18 | syl 17 | . 2 ⊢ (𝐴 ∈ Hf → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) |
| 20 | 16, 19 | mpbird 257 | 1 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 ∪ cuni 4883 Tr wtr 5229 Ord word 6351 Oncon0 6352 ‘cfv 6531 ωcom 7861 rankcrnk 9777 Hf chf 36190 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-reg 9606 ax-inf2 9655 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-r1 9778 df-rank 9779 df-hf 36191 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |