Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfuni Structured version   Visualization version   GIF version

Theorem hfuni 36185
Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfuni (𝐴 ∈ Hf → 𝐴 ∈ Hf )

Proof of Theorem hfuni
StepHypRef Expression
1 rankuni 9903 . . 3 (rank‘ 𝐴) = (rank‘𝐴)
2 rankon 9835 . . . . . 6 (rank‘𝐴) ∈ On
3 ontr 6493 . . . . . 6 ((rank‘𝐴) ∈ On → Tr (rank‘𝐴))
42, 3ax-mp 5 . . . . 5 Tr (rank‘𝐴)
5 df-tr 5260 . . . . 5 (Tr (rank‘𝐴) ↔ (rank‘𝐴) ⊆ (rank‘𝐴))
64, 5mpbi 230 . . . 4 (rank‘𝐴) ⊆ (rank‘𝐴)
7 elhf2g 36177 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
87ibi 267 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
9 rankon 9835 . . . . . . 7 (rank‘ 𝐴) ∈ On
101, 9eqeltrri 2838 . . . . . 6 (rank‘𝐴) ∈ On
1110onordi 6495 . . . . 5 Ord (rank‘𝐴)
12 ordom 7897 . . . . 5 Ord ω
13 ordtr2 6428 . . . . 5 ((Ord (rank‘𝐴) ∧ Ord ω) → (( (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → (rank‘𝐴) ∈ ω))
1411, 12, 13mp2an 692 . . . 4 (( (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → (rank‘𝐴) ∈ ω)
156, 8, 14sylancr 587 . . 3 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
161, 15eqeltrid 2845 . 2 (𝐴 ∈ Hf → (rank‘ 𝐴) ∈ ω)
17 uniexg 7760 . . 3 (𝐴 ∈ Hf → 𝐴 ∈ V)
18 elhf2g 36177 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Hf ↔ (rank‘ 𝐴) ∈ ω))
1917, 18syl 17 . 2 (𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ (rank‘ 𝐴) ∈ ω))
2016, 19mpbird 257 1 (𝐴 ∈ Hf → 𝐴 ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  Vcvv 3480  wss 3951   cuni 4907  Tr wtr 5259  Ord word 6383  Oncon0 6384  cfv 6561  ωcom 7887  rankcrnk 9803   Hf chf 36173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-reg 9632  ax-inf2 9681
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-r1 9804  df-rank 9805  df-hf 36174
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator