Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfuni | Structured version Visualization version GIF version |
Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfuni | ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankuni 9552 | . . 3 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
2 | rankon 9484 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
3 | 2 | ontrci 6357 | . . . . 5 ⊢ Tr (rank‘𝐴) |
4 | df-tr 5188 | . . . . 5 ⊢ (Tr (rank‘𝐴) ↔ ∪ (rank‘𝐴) ⊆ (rank‘𝐴)) | |
5 | 3, 4 | mpbi 229 | . . . 4 ⊢ ∪ (rank‘𝐴) ⊆ (rank‘𝐴) |
6 | elhf2g 34405 | . . . . 5 ⊢ (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
7 | 6 | ibi 266 | . . . 4 ⊢ (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω) |
8 | rankon 9484 | . . . . . . 7 ⊢ (rank‘∪ 𝐴) ∈ On | |
9 | 1, 8 | eqeltrri 2836 | . . . . . 6 ⊢ ∪ (rank‘𝐴) ∈ On |
10 | 9 | onordi 6356 | . . . . 5 ⊢ Ord ∪ (rank‘𝐴) |
11 | ordom 7697 | . . . . 5 ⊢ Ord ω | |
12 | ordtr2 6295 | . . . . 5 ⊢ ((Ord ∪ (rank‘𝐴) ∧ Ord ω) → ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω)) | |
13 | 10, 11, 12 | mp2an 688 | . . . 4 ⊢ ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω) |
14 | 5, 7, 13 | sylancr 586 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ (rank‘𝐴) ∈ ω) |
15 | 1, 14 | eqeltrid 2843 | . 2 ⊢ (𝐴 ∈ Hf → (rank‘∪ 𝐴) ∈ ω) |
16 | uniexg 7571 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ V) | |
17 | elhf2g 34405 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ Hf → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) |
19 | 15, 18 | mpbird 256 | 1 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∪ cuni 4836 Tr wtr 5187 Ord word 6250 Oncon0 6251 ‘cfv 6418 ωcom 7687 rankcrnk 9452 Hf chf 34401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-reg 9281 ax-inf2 9329 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-r1 9453 df-rank 9454 df-hf 34402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |