Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfuni Structured version   Visualization version   GIF version

Theorem hfuni 34486
Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfuni (𝐴 ∈ Hf → 𝐴 ∈ Hf )

Proof of Theorem hfuni
StepHypRef Expression
1 rankuni 9621 . . 3 (rank‘ 𝐴) = (rank‘𝐴)
2 rankon 9553 . . . . . 6 (rank‘𝐴) ∈ On
32ontrci 6372 . . . . 5 Tr (rank‘𝐴)
4 df-tr 5192 . . . . 5 (Tr (rank‘𝐴) ↔ (rank‘𝐴) ⊆ (rank‘𝐴))
53, 4mpbi 229 . . . 4 (rank‘𝐴) ⊆ (rank‘𝐴)
6 elhf2g 34478 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
76ibi 266 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
8 rankon 9553 . . . . . . 7 (rank‘ 𝐴) ∈ On
91, 8eqeltrri 2836 . . . . . 6 (rank‘𝐴) ∈ On
109onordi 6371 . . . . 5 Ord (rank‘𝐴)
11 ordom 7722 . . . . 5 Ord ω
12 ordtr2 6310 . . . . 5 ((Ord (rank‘𝐴) ∧ Ord ω) → (( (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → (rank‘𝐴) ∈ ω))
1310, 11, 12mp2an 689 . . . 4 (( (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → (rank‘𝐴) ∈ ω)
145, 7, 13sylancr 587 . . 3 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
151, 14eqeltrid 2843 . 2 (𝐴 ∈ Hf → (rank‘ 𝐴) ∈ ω)
16 uniexg 7593 . . 3 (𝐴 ∈ Hf → 𝐴 ∈ V)
17 elhf2g 34478 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Hf ↔ (rank‘ 𝐴) ∈ ω))
1816, 17syl 17 . 2 (𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ (rank‘ 𝐴) ∈ ω))
1915, 18mpbird 256 1 (𝐴 ∈ Hf → 𝐴 ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wcel 2106  Vcvv 3432  wss 3887   cuni 4839  Tr wtr 5191  Ord word 6265  Oncon0 6266  cfv 6433  ωcom 7712  rankcrnk 9521   Hf chf 34474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-reg 9351  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-r1 9522  df-rank 9523  df-hf 34475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator