MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskuni Structured version   Visualization version   GIF version

Theorem tskuni 10205
Description: The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskuni ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskuni
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsksdom 10178 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
2 cardidg 9970 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → (card‘𝑇) ≈ 𝑇)
32ensymd 8560 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → 𝑇 ≈ (card‘𝑇))
43adantr 483 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝑇 ≈ (card‘𝑇))
5 sdomentr 8651 . . . . . . . . . . . 12 ((𝐴𝑇𝑇 ≈ (card‘𝑇)) → 𝐴 ≺ (card‘𝑇))
61, 4, 5syl2anc 586 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ≺ (card‘𝑇))
7 eqid 2821 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴 ↦ (𝑓𝑥))
87rnmpt 5827 . . . . . . . . . . . . . 14 ran (𝑥𝐴 ↦ (𝑓𝑥)) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)}
9 cardon 9373 . . . . . . . . . . . . . . . . 17 (card‘𝑇) ∈ On
10 sdomdom 8537 . . . . . . . . . . . . . . . . 17 (𝐴 ≺ (card‘𝑇) → 𝐴 ≼ (card‘𝑇))
11 ondomen 9463 . . . . . . . . . . . . . . . . 17 (((card‘𝑇) ∈ On ∧ 𝐴 ≼ (card‘𝑇)) → 𝐴 ∈ dom card)
129, 10, 11sylancr 589 . . . . . . . . . . . . . . . 16 (𝐴 ≺ (card‘𝑇) → 𝐴 ∈ dom card)
1312adantl 484 . . . . . . . . . . . . . . 15 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → 𝐴 ∈ dom card)
14 vex 3497 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1514imaex 7621 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
1615, 7fnmpti 6491 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝑓𝑥)) Fn 𝐴
17 dffn4 6596 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ↦ (𝑓𝑥)) Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥)))
1816, 17mpbi 232 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥))
19 fodomnum 9483 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom card → ((𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥)) → ran (𝑥𝐴 ↦ (𝑓𝑥)) ≼ 𝐴))
2013, 18, 19mpisyl 21 . . . . . . . . . . . . . 14 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → ran (𝑥𝐴 ↦ (𝑓𝑥)) ≼ 𝐴)
218, 20eqbrtrrid 5102 . . . . . . . . . . . . 13 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≼ 𝐴)
22 domsdomtr 8652 . . . . . . . . . . . . 13 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≼ 𝐴𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
2321, 22sylancom 590 . . . . . . . . . . . 12 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
2423adantll 712 . . . . . . . . . . 11 (((𝑇 ∈ Tarski ∧ 𝐴𝑇) ∧ 𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
256, 24mpdan 685 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
26 ne0i 4300 . . . . . . . . . . . 12 (𝐴𝑇𝑇 ≠ ∅)
27 tskcard 10203 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)
2826, 27sylan2 594 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (card‘𝑇) ∈ Inacc)
29 elina 10109 . . . . . . . . . . . 12 ((card‘𝑇) ∈ Inacc ↔ ((card‘𝑇) ≠ ∅ ∧ (cf‘(card‘𝑇)) = (card‘𝑇) ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)))
3029simp2bi 1142 . . . . . . . . . . 11 ((card‘𝑇) ∈ Inacc → (cf‘(card‘𝑇)) = (card‘𝑇))
3128, 30syl 17 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (cf‘(card‘𝑇)) = (card‘𝑇))
3225, 31breqtrrd 5094 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
33323adant2 1127 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
3433adantr 483 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
35283adant2 1127 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → (card‘𝑇) ∈ Inacc)
3635adantr 483 . . . . . . . . 9 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (card‘𝑇) ∈ Inacc)
37 inawina 10112 . . . . . . . . 9 ((card‘𝑇) ∈ Inacc → (card‘𝑇) ∈ Inaccw)
38 winalim 10117 . . . . . . . . 9 ((card‘𝑇) ∈ Inaccw → Lim (card‘𝑇))
3936, 37, 383syl 18 . . . . . . . 8 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → Lim (card‘𝑇))
40 vex 3497 . . . . . . . . . . 11 𝑦 ∈ V
41 eqeq1 2825 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧 = (𝑓𝑥) ↔ 𝑦 = (𝑓𝑥)))
4241rexbidv 3297 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (𝑓𝑥) ↔ ∃𝑥𝐴 𝑦 = (𝑓𝑥)))
4340, 42elab 3667 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ↔ ∃𝑥𝐴 𝑦 = (𝑓𝑥))
44 imassrn 5940 . . . . . . . . . . . . . 14 (𝑓𝑥) ⊆ ran 𝑓
45 f1ofo 6622 . . . . . . . . . . . . . . 15 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑓: 𝐴onto→(card‘𝑇))
46 forn 6593 . . . . . . . . . . . . . . 15 (𝑓: 𝐴onto→(card‘𝑇) → ran 𝑓 = (card‘𝑇))
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓: 𝐴1-1-onto→(card‘𝑇) → ran 𝑓 = (card‘𝑇))
4844, 47sseqtrid 4019 . . . . . . . . . . . . 13 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (𝑓𝑥) ⊆ (card‘𝑇))
4948ad2antlr 725 . . . . . . . . . . . 12 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ⊆ (card‘𝑇))
50 f1of1 6614 . . . . . . . . . . . . . . . 16 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑓: 𝐴1-1→(card‘𝑇))
51 elssuni 4868 . . . . . . . . . . . . . . . 16 (𝑥𝐴𝑥 𝐴)
52 vex 3497 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
5352f1imaen 8571 . . . . . . . . . . . . . . . 16 ((𝑓: 𝐴1-1→(card‘𝑇) ∧ 𝑥 𝐴) → (𝑓𝑥) ≈ 𝑥)
5450, 51, 53syl2an 597 . . . . . . . . . . . . . . 15 ((𝑓: 𝐴1-1-onto→(card‘𝑇) ∧ 𝑥𝐴) → (𝑓𝑥) ≈ 𝑥)
5554adantll 712 . . . . . . . . . . . . . 14 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≈ 𝑥)
56 simpl1 1187 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑇 ∈ Tarski)
57 trss 5181 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑇 → (𝐴𝑇𝐴𝑇))
5857imp 409 . . . . . . . . . . . . . . . . . . 19 ((Tr 𝑇𝐴𝑇) → 𝐴𝑇)
59583adant1 1126 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
6059sselda 3967 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥𝑇)
61 tsksdom 10178 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇)
6256, 60, 61syl2anc 586 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥𝑇)
6356, 3syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑇 ≈ (card‘𝑇))
64 sdomentr 8651 . . . . . . . . . . . . . . . 16 ((𝑥𝑇𝑇 ≈ (card‘𝑇)) → 𝑥 ≺ (card‘𝑇))
6562, 63, 64syl2anc 586 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥 ≺ (card‘𝑇))
6665adantlr 713 . . . . . . . . . . . . . 14 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → 𝑥 ≺ (card‘𝑇))
67 ensdomtr 8653 . . . . . . . . . . . . . 14 (((𝑓𝑥) ≈ 𝑥𝑥 ≺ (card‘𝑇)) → (𝑓𝑥) ≺ (card‘𝑇))
6855, 66, 67syl2anc 586 . . . . . . . . . . . . 13 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≺ (card‘𝑇))
6936, 30syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (cf‘(card‘𝑇)) = (card‘𝑇))
7069adantr 483 . . . . . . . . . . . . 13 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (cf‘(card‘𝑇)) = (card‘𝑇))
7168, 70breqtrrd 5094 . . . . . . . . . . . 12 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≺ (cf‘(card‘𝑇)))
72 sseq1 3992 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ↔ (𝑓𝑥) ⊆ (card‘𝑇)))
73 breq1 5069 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (cf‘(card‘𝑇)) ↔ (𝑓𝑥) ≺ (cf‘(card‘𝑇))))
7472, 73anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑥) → ((𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇))) ↔ ((𝑓𝑥) ⊆ (card‘𝑇) ∧ (𝑓𝑥) ≺ (cf‘(card‘𝑇)))))
7574biimprcd 252 . . . . . . . . . . . 12 (((𝑓𝑥) ⊆ (card‘𝑇) ∧ (𝑓𝑥) ≺ (cf‘(card‘𝑇))) → (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7649, 71, 75syl2anc 586 . . . . . . . . . . 11 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7776rexlimdva 3284 . . . . . . . . . 10 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (∃𝑥𝐴 𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7843, 77syl5bi 244 . . . . . . . . 9 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7978ralrimiv 3181 . . . . . . . 8 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇))))
80 fvex 6683 . . . . . . . . 9 (card‘𝑇) ∈ V
8180cfslb2n 9690 . . . . . . . 8 ((Lim (card‘𝑇) ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇)))
8239, 79, 81syl2anc 586 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇)))
8334, 82mpd 15 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇))
8415dfiun2 4958 . . . . . . . 8 𝑥𝐴 (𝑓𝑥) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)}
8548ralrimivw 3183 . . . . . . . . . 10 (𝑓: 𝐴1-1-onto→(card‘𝑇) → ∀𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
86 iunss 4969 . . . . . . . . . 10 ( 𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇) ↔ ∀𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
8785, 86sylibr 236 . . . . . . . . 9 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
88 fof 6590 . . . . . . . . . . . 12 (𝑓: 𝐴onto→(card‘𝑇) → 𝑓: 𝐴⟶(card‘𝑇))
89 foelrn 6872 . . . . . . . . . . . . 13 ((𝑓: 𝐴onto→(card‘𝑇) ∧ 𝑦 ∈ (card‘𝑇)) → ∃𝑧 𝐴𝑦 = (𝑓𝑧))
9089ex 415 . . . . . . . . . . . 12 (𝑓: 𝐴onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → ∃𝑧 𝐴𝑦 = (𝑓𝑧)))
91 eluni2 4842 . . . . . . . . . . . . . . 15 (𝑧 𝐴 ↔ ∃𝑥𝐴 𝑧𝑥)
92 nfv 1915 . . . . . . . . . . . . . . . 16 𝑥 𝑓: 𝐴⟶(card‘𝑇)
93 nfiu1 4953 . . . . . . . . . . . . . . . . 17 𝑥 𝑥𝐴 (𝑓𝑥)
9493nfel2 2996 . . . . . . . . . . . . . . . 16 𝑥(𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)
95 ssiun2 4971 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝑓𝑥) ⊆ 𝑥𝐴 (𝑓𝑥))
96953ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑥) ⊆ 𝑥𝐴 (𝑓𝑥))
97 ffn 6514 . . . . . . . . . . . . . . . . . . . 20 (𝑓: 𝐴⟶(card‘𝑇) → 𝑓 Fn 𝐴)
98973ad2ant1 1129 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑓 Fn 𝐴)
99513ad2ant2 1130 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑥 𝐴)
100 simp3 1134 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑧𝑥)
101 fnfvima 6995 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn 𝐴𝑥 𝐴𝑧𝑥) → (𝑓𝑧) ∈ (𝑓𝑥))
10298, 99, 100, 101syl3anc 1367 . . . . . . . . . . . . . . . . . 18 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑧) ∈ (𝑓𝑥))
10396, 102sseldd 3968 . . . . . . . . . . . . . . . . 17 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥))
1041033exp 1115 . . . . . . . . . . . . . . . 16 (𝑓: 𝐴⟶(card‘𝑇) → (𝑥𝐴 → (𝑧𝑥 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥))))
10592, 94, 104rexlimd 3317 . . . . . . . . . . . . . . 15 (𝑓: 𝐴⟶(card‘𝑇) → (∃𝑥𝐴 𝑧𝑥 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)))
10691, 105syl5bi 244 . . . . . . . . . . . . . 14 (𝑓: 𝐴⟶(card‘𝑇) → (𝑧 𝐴 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)))
107 eleq1a 2908 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥) → (𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥)))
108106, 107syl6 35 . . . . . . . . . . . . 13 (𝑓: 𝐴⟶(card‘𝑇) → (𝑧 𝐴 → (𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥))))
109108rexlimdv 3283 . . . . . . . . . . . 12 (𝑓: 𝐴⟶(card‘𝑇) → (∃𝑧 𝐴𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥)))
11088, 90, 109sylsyld 61 . . . . . . . . . . 11 (𝑓: 𝐴onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → 𝑦 𝑥𝐴 (𝑓𝑥)))
11145, 110syl 17 . . . . . . . . . 10 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → 𝑦 𝑥𝐴 (𝑓𝑥)))
112111ssrdv 3973 . . . . . . . . 9 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (card‘𝑇) ⊆ 𝑥𝐴 (𝑓𝑥))
11387, 112eqssd 3984 . . . . . . . 8 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑥𝐴 (𝑓𝑥) = (card‘𝑇))
11484, 113syl5eqr 2870 . . . . . . 7 (𝑓: 𝐴1-1-onto→(card‘𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} = (card‘𝑇))
115114necon3ai 3041 . . . . . 6 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
11683, 115syl 17 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
117116pm2.01da 797 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
118117nexdv 1937 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
119 entr 8561 . . . . . . 7 (( 𝐴𝑇𝑇 ≈ (card‘𝑇)) → 𝐴 ≈ (card‘𝑇))
1203, 119sylan2 594 . . . . . 6 (( 𝐴𝑇𝑇 ∈ Tarski) → 𝐴 ≈ (card‘𝑇))
121 bren 8518 . . . . . 6 ( 𝐴 ≈ (card‘𝑇) ↔ ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
122120, 121sylib 220 . . . . 5 (( 𝐴𝑇𝑇 ∈ Tarski) → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
123122expcom 416 . . . 4 (𝑇 ∈ Tarski → ( 𝐴𝑇 → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇)))
1241233ad2ant1 1129 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ( 𝐴𝑇 → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇)))
125118, 124mtod 200 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ 𝐴𝑇)
126 uniss 4846 . . . . . . . . 9 (𝐴𝑇 𝐴 𝑇)
127 df-tr 5173 . . . . . . . . . 10 (Tr 𝑇 𝑇𝑇)
128127biimpi 218 . . . . . . . . 9 (Tr 𝑇 𝑇𝑇)
129126, 128sylan9ss 3980 . . . . . . . 8 ((𝐴𝑇 ∧ Tr 𝑇) → 𝐴𝑇)
130129expcom 416 . . . . . . 7 (Tr 𝑇 → (𝐴𝑇 𝐴𝑇))
13157, 130syld 47 . . . . . 6 (Tr 𝑇 → (𝐴𝑇 𝐴𝑇))
132131imp 409 . . . . 5 ((Tr 𝑇𝐴𝑇) → 𝐴𝑇)
133 tsken 10176 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → ( 𝐴𝑇 𝐴𝑇))
134132, 133sylan2 594 . . . 4 ((𝑇 ∈ Tarski ∧ (Tr 𝑇𝐴𝑇)) → ( 𝐴𝑇 𝐴𝑇))
1351343impb 1111 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ( 𝐴𝑇 𝐴𝑇))
136135ord 860 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → (¬ 𝐴𝑇 𝐴𝑇))
137125, 136mpd 15 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wo 843  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291  𝒫 cpw 4539   cuni 4838   ciun 4919   class class class wbr 5066  cmpt 5146  Tr wtr 5172  dom cdm 5555  ran crn 5556  cima 5558  Oncon0 6191  Lim wlim 6192   Fn wfn 6350  wf 6351  1-1wf1 6352  ontowfo 6353  1-1-ontowf1o 6354  cfv 6355  cen 8506  cdom 8507  csdm 8508  cardccrd 9364  cfccf 9366  Inaccwcwina 10104  Inacccina 10105  Tarskictsk 10170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-inf2 9104  ax-ac2 9885
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-smo 7983  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-oi 8974  df-har 9022  df-r1 9193  df-card 9368  df-aleph 9369  df-cf 9370  df-acn 9371  df-ac 9542  df-wina 10106  df-ina 10107  df-tsk 10171
This theorem is referenced by:  tskwun  10206  tskint  10207  tskun  10208  tskurn  10211  pwinfi3  39942
  Copyright terms: Public domain W3C validator