MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskuni Structured version   Visualization version   GIF version

Theorem tskuni 10820
Description: The union of an element of a transitive Tarski class is in the set. (Contributed by Mario Carneiro, 22-Jun-2013.)
Assertion
Ref Expression
tskuni ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)

Proof of Theorem tskuni
Dummy variables 𝑓 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsksdom 10793 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴𝑇)
2 cardidg 10585 . . . . . . . . . . . . . 14 (𝑇 ∈ Tarski → (card‘𝑇) ≈ 𝑇)
32ensymd 9043 . . . . . . . . . . . . 13 (𝑇 ∈ Tarski → 𝑇 ≈ (card‘𝑇))
43adantr 480 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝑇 ≈ (card‘𝑇))
5 sdomentr 9149 . . . . . . . . . . . 12 ((𝐴𝑇𝑇 ≈ (card‘𝑇)) → 𝐴 ≺ (card‘𝑇))
61, 4, 5syl2anc 584 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → 𝐴 ≺ (card‘𝑇))
7 eqid 2734 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝑓𝑥)) = (𝑥𝐴 ↦ (𝑓𝑥))
87rnmpt 5970 . . . . . . . . . . . . . 14 ran (𝑥𝐴 ↦ (𝑓𝑥)) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)}
9 cardon 9981 . . . . . . . . . . . . . . . . 17 (card‘𝑇) ∈ On
10 sdomdom 9018 . . . . . . . . . . . . . . . . 17 (𝐴 ≺ (card‘𝑇) → 𝐴 ≼ (card‘𝑇))
11 ondomen 10074 . . . . . . . . . . . . . . . . 17 (((card‘𝑇) ∈ On ∧ 𝐴 ≼ (card‘𝑇)) → 𝐴 ∈ dom card)
129, 10, 11sylancr 587 . . . . . . . . . . . . . . . 16 (𝐴 ≺ (card‘𝑇) → 𝐴 ∈ dom card)
1312adantl 481 . . . . . . . . . . . . . . 15 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → 𝐴 ∈ dom card)
14 vex 3481 . . . . . . . . . . . . . . . . . 18 𝑓 ∈ V
1514imaex 7936 . . . . . . . . . . . . . . . . 17 (𝑓𝑥) ∈ V
1615, 7fnmpti 6711 . . . . . . . . . . . . . . . 16 (𝑥𝐴 ↦ (𝑓𝑥)) Fn 𝐴
17 dffn4 6826 . . . . . . . . . . . . . . . 16 ((𝑥𝐴 ↦ (𝑓𝑥)) Fn 𝐴 ↔ (𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥)))
1816, 17mpbi 230 . . . . . . . . . . . . . . 15 (𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥))
19 fodomnum 10094 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom card → ((𝑥𝐴 ↦ (𝑓𝑥)):𝐴onto→ran (𝑥𝐴 ↦ (𝑓𝑥)) → ran (𝑥𝐴 ↦ (𝑓𝑥)) ≼ 𝐴))
2013, 18, 19mpisyl 21 . . . . . . . . . . . . . 14 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → ran (𝑥𝐴 ↦ (𝑓𝑥)) ≼ 𝐴)
218, 20eqbrtrrid 5183 . . . . . . . . . . . . 13 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≼ 𝐴)
22 domsdomtr 9150 . . . . . . . . . . . . 13 (({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≼ 𝐴𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
2321, 22sylancom 588 . . . . . . . . . . . 12 ((𝐴𝑇𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
2423adantll 714 . . . . . . . . . . 11 (((𝑇 ∈ Tarski ∧ 𝐴𝑇) ∧ 𝐴 ≺ (card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
256, 24mpdan 687 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (card‘𝑇))
26 ne0i 4346 . . . . . . . . . . . 12 (𝐴𝑇𝑇 ≠ ∅)
27 tskcard 10818 . . . . . . . . . . . 12 ((𝑇 ∈ Tarski ∧ 𝑇 ≠ ∅) → (card‘𝑇) ∈ Inacc)
2826, 27sylan2 593 . . . . . . . . . . 11 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (card‘𝑇) ∈ Inacc)
29 elina 10724 . . . . . . . . . . . 12 ((card‘𝑇) ∈ Inacc ↔ ((card‘𝑇) ≠ ∅ ∧ (cf‘(card‘𝑇)) = (card‘𝑇) ∧ ∀𝑥 ∈ (card‘𝑇)𝒫 𝑥 ≺ (card‘𝑇)))
3029simp2bi 1145 . . . . . . . . . . 11 ((card‘𝑇) ∈ Inacc → (cf‘(card‘𝑇)) = (card‘𝑇))
3128, 30syl 17 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → (cf‘(card‘𝑇)) = (card‘𝑇))
3225, 31breqtrrd 5175 . . . . . . . . 9 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
33323adant2 1130 . . . . . . . 8 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
3433adantr 480 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)))
35283adant2 1130 . . . . . . . . . 10 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → (card‘𝑇) ∈ Inacc)
3635adantr 480 . . . . . . . . 9 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (card‘𝑇) ∈ Inacc)
37 inawina 10727 . . . . . . . . 9 ((card‘𝑇) ∈ Inacc → (card‘𝑇) ∈ Inaccw)
38 winalim 10732 . . . . . . . . 9 ((card‘𝑇) ∈ Inaccw → Lim (card‘𝑇))
3936, 37, 383syl 18 . . . . . . . 8 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → Lim (card‘𝑇))
40 vex 3481 . . . . . . . . . . 11 𝑦 ∈ V
41 eqeq1 2738 . . . . . . . . . . . 12 (𝑧 = 𝑦 → (𝑧 = (𝑓𝑥) ↔ 𝑦 = (𝑓𝑥)))
4241rexbidv 3176 . . . . . . . . . . 11 (𝑧 = 𝑦 → (∃𝑥𝐴 𝑧 = (𝑓𝑥) ↔ ∃𝑥𝐴 𝑦 = (𝑓𝑥)))
4340, 42elab 3680 . . . . . . . . . 10 (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ↔ ∃𝑥𝐴 𝑦 = (𝑓𝑥))
44 imassrn 6090 . . . . . . . . . . . . . 14 (𝑓𝑥) ⊆ ran 𝑓
45 f1ofo 6855 . . . . . . . . . . . . . . 15 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑓: 𝐴onto→(card‘𝑇))
46 forn 6823 . . . . . . . . . . . . . . 15 (𝑓: 𝐴onto→(card‘𝑇) → ran 𝑓 = (card‘𝑇))
4745, 46syl 17 . . . . . . . . . . . . . 14 (𝑓: 𝐴1-1-onto→(card‘𝑇) → ran 𝑓 = (card‘𝑇))
4844, 47sseqtrid 4047 . . . . . . . . . . . . 13 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (𝑓𝑥) ⊆ (card‘𝑇))
4948ad2antlr 727 . . . . . . . . . . . 12 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ⊆ (card‘𝑇))
50 f1of1 6847 . . . . . . . . . . . . . . . 16 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑓: 𝐴1-1→(card‘𝑇))
51 elssuni 4941 . . . . . . . . . . . . . . . 16 (𝑥𝐴𝑥 𝐴)
52 vex 3481 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
5352f1imaen 9055 . . . . . . . . . . . . . . . 16 ((𝑓: 𝐴1-1→(card‘𝑇) ∧ 𝑥 𝐴) → (𝑓𝑥) ≈ 𝑥)
5450, 51, 53syl2an 596 . . . . . . . . . . . . . . 15 ((𝑓: 𝐴1-1-onto→(card‘𝑇) ∧ 𝑥𝐴) → (𝑓𝑥) ≈ 𝑥)
5554adantll 714 . . . . . . . . . . . . . 14 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≈ 𝑥)
56 simpl1 1190 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑇 ∈ Tarski)
57 trss 5275 . . . . . . . . . . . . . . . . . . . 20 (Tr 𝑇 → (𝐴𝑇𝐴𝑇))
5857imp 406 . . . . . . . . . . . . . . . . . . 19 ((Tr 𝑇𝐴𝑇) → 𝐴𝑇)
59583adant1 1129 . . . . . . . . . . . . . . . . . 18 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
6059sselda 3994 . . . . . . . . . . . . . . . . 17 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥𝑇)
61 tsksdom 10793 . . . . . . . . . . . . . . . . 17 ((𝑇 ∈ Tarski ∧ 𝑥𝑇) → 𝑥𝑇)
6256, 60, 61syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥𝑇)
6356, 3syl 17 . . . . . . . . . . . . . . . 16 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑇 ≈ (card‘𝑇))
64 sdomentr 9149 . . . . . . . . . . . . . . . 16 ((𝑥𝑇𝑇 ≈ (card‘𝑇)) → 𝑥 ≺ (card‘𝑇))
6562, 63, 64syl2anc 584 . . . . . . . . . . . . . . 15 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑥𝐴) → 𝑥 ≺ (card‘𝑇))
6665adantlr 715 . . . . . . . . . . . . . 14 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → 𝑥 ≺ (card‘𝑇))
67 ensdomtr 9151 . . . . . . . . . . . . . 14 (((𝑓𝑥) ≈ 𝑥𝑥 ≺ (card‘𝑇)) → (𝑓𝑥) ≺ (card‘𝑇))
6855, 66, 67syl2anc 584 . . . . . . . . . . . . 13 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≺ (card‘𝑇))
6936, 30syl 17 . . . . . . . . . . . . . 14 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (cf‘(card‘𝑇)) = (card‘𝑇))
7069adantr 480 . . . . . . . . . . . . 13 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (cf‘(card‘𝑇)) = (card‘𝑇))
7168, 70breqtrrd 5175 . . . . . . . . . . . 12 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑓𝑥) ≺ (cf‘(card‘𝑇)))
72 sseq1 4020 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ↔ (𝑓𝑥) ⊆ (card‘𝑇)))
73 breq1 5150 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑥) → (𝑦 ≺ (cf‘(card‘𝑇)) ↔ (𝑓𝑥) ≺ (cf‘(card‘𝑇))))
7472, 73anbi12d 632 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑥) → ((𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇))) ↔ ((𝑓𝑥) ⊆ (card‘𝑇) ∧ (𝑓𝑥) ≺ (cf‘(card‘𝑇)))))
7574biimprcd 250 . . . . . . . . . . . 12 (((𝑓𝑥) ⊆ (card‘𝑇) ∧ (𝑓𝑥) ≺ (cf‘(card‘𝑇))) → (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7649, 71, 75syl2anc 584 . . . . . . . . . . 11 ((((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) ∧ 𝑥𝐴) → (𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7776rexlimdva 3152 . . . . . . . . . 10 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (∃𝑥𝐴 𝑦 = (𝑓𝑥) → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7843, 77biimtrid 242 . . . . . . . . 9 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → (𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} → (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))))
7978ralrimiv 3142 . . . . . . . 8 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇))))
80 fvex 6919 . . . . . . . . 9 (card‘𝑇) ∈ V
8180cfslb2n 10305 . . . . . . . 8 ((Lim (card‘𝑇) ∧ ∀𝑦 ∈ {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} (𝑦 ⊆ (card‘𝑇) ∧ 𝑦 ≺ (cf‘(card‘𝑇)))) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇)))
8239, 79, 81syl2anc 584 . . . . . . 7 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ({𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≺ (cf‘(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇)))
8334, 82mpd 15 . . . . . 6 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇))
8415dfiun2 5037 . . . . . . . 8 𝑥𝐴 (𝑓𝑥) = {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)}
8548ralrimivw 3147 . . . . . . . . . 10 (𝑓: 𝐴1-1-onto→(card‘𝑇) → ∀𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
86 iunss 5049 . . . . . . . . . 10 ( 𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇) ↔ ∀𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
8785, 86sylibr 234 . . . . . . . . 9 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑥𝐴 (𝑓𝑥) ⊆ (card‘𝑇))
88 fof 6820 . . . . . . . . . . . 12 (𝑓: 𝐴onto→(card‘𝑇) → 𝑓: 𝐴⟶(card‘𝑇))
89 foelrn 7126 . . . . . . . . . . . . 13 ((𝑓: 𝐴onto→(card‘𝑇) ∧ 𝑦 ∈ (card‘𝑇)) → ∃𝑧 𝐴𝑦 = (𝑓𝑧))
9089ex 412 . . . . . . . . . . . 12 (𝑓: 𝐴onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → ∃𝑧 𝐴𝑦 = (𝑓𝑧)))
91 eluni2 4915 . . . . . . . . . . . . . . 15 (𝑧 𝐴 ↔ ∃𝑥𝐴 𝑧𝑥)
92 nfv 1911 . . . . . . . . . . . . . . . 16 𝑥 𝑓: 𝐴⟶(card‘𝑇)
93 nfiu1 5031 . . . . . . . . . . . . . . . . 17 𝑥 𝑥𝐴 (𝑓𝑥)
9493nfel2 2921 . . . . . . . . . . . . . . . 16 𝑥(𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)
95 ssiun2 5051 . . . . . . . . . . . . . . . . . . 19 (𝑥𝐴 → (𝑓𝑥) ⊆ 𝑥𝐴 (𝑓𝑥))
96953ad2ant2 1133 . . . . . . . . . . . . . . . . . 18 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑥) ⊆ 𝑥𝐴 (𝑓𝑥))
97 ffn 6736 . . . . . . . . . . . . . . . . . . . 20 (𝑓: 𝐴⟶(card‘𝑇) → 𝑓 Fn 𝐴)
98973ad2ant1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑓 Fn 𝐴)
99513ad2ant2 1133 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑥 𝐴)
100 simp3 1137 . . . . . . . . . . . . . . . . . . 19 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → 𝑧𝑥)
101 fnfvima 7252 . . . . . . . . . . . . . . . . . . 19 ((𝑓 Fn 𝐴𝑥 𝐴𝑧𝑥) → (𝑓𝑧) ∈ (𝑓𝑥))
10298, 99, 100, 101syl3anc 1370 . . . . . . . . . . . . . . . . . 18 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑧) ∈ (𝑓𝑥))
10396, 102sseldd 3995 . . . . . . . . . . . . . . . . 17 ((𝑓: 𝐴⟶(card‘𝑇) ∧ 𝑥𝐴𝑧𝑥) → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥))
1041033exp 1118 . . . . . . . . . . . . . . . 16 (𝑓: 𝐴⟶(card‘𝑇) → (𝑥𝐴 → (𝑧𝑥 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥))))
10592, 94, 104rexlimd 3263 . . . . . . . . . . . . . . 15 (𝑓: 𝐴⟶(card‘𝑇) → (∃𝑥𝐴 𝑧𝑥 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)))
10691, 105biimtrid 242 . . . . . . . . . . . . . 14 (𝑓: 𝐴⟶(card‘𝑇) → (𝑧 𝐴 → (𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥)))
107 eleq1a 2833 . . . . . . . . . . . . . 14 ((𝑓𝑧) ∈ 𝑥𝐴 (𝑓𝑥) → (𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥)))
108106, 107syl6 35 . . . . . . . . . . . . 13 (𝑓: 𝐴⟶(card‘𝑇) → (𝑧 𝐴 → (𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥))))
109108rexlimdv 3150 . . . . . . . . . . . 12 (𝑓: 𝐴⟶(card‘𝑇) → (∃𝑧 𝐴𝑦 = (𝑓𝑧) → 𝑦 𝑥𝐴 (𝑓𝑥)))
11088, 90, 109sylsyld 61 . . . . . . . . . . 11 (𝑓: 𝐴onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → 𝑦 𝑥𝐴 (𝑓𝑥)))
11145, 110syl 17 . . . . . . . . . 10 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (𝑦 ∈ (card‘𝑇) → 𝑦 𝑥𝐴 (𝑓𝑥)))
112111ssrdv 4000 . . . . . . . . 9 (𝑓: 𝐴1-1-onto→(card‘𝑇) → (card‘𝑇) ⊆ 𝑥𝐴 (𝑓𝑥))
11387, 112eqssd 4012 . . . . . . . 8 (𝑓: 𝐴1-1-onto→(card‘𝑇) → 𝑥𝐴 (𝑓𝑥) = (card‘𝑇))
11484, 113eqtr3id 2788 . . . . . . 7 (𝑓: 𝐴1-1-onto→(card‘𝑇) → {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} = (card‘𝑇))
115114necon3ai 2962 . . . . . 6 ( {𝑧 ∣ ∃𝑥𝐴 𝑧 = (𝑓𝑥)} ≠ (card‘𝑇) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
11683, 115syl 17 . . . . 5 (((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) ∧ 𝑓: 𝐴1-1-onto→(card‘𝑇)) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
117116pm2.01da 799 . . . 4 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ 𝑓: 𝐴1-1-onto→(card‘𝑇))
118117nexdv 1933 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
119 entr 9044 . . . . . . 7 (( 𝐴𝑇𝑇 ≈ (card‘𝑇)) → 𝐴 ≈ (card‘𝑇))
1203, 119sylan2 593 . . . . . 6 (( 𝐴𝑇𝑇 ∈ Tarski) → 𝐴 ≈ (card‘𝑇))
121 bren 8993 . . . . . 6 ( 𝐴 ≈ (card‘𝑇) ↔ ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
122120, 121sylib 218 . . . . 5 (( 𝐴𝑇𝑇 ∈ Tarski) → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇))
123122expcom 413 . . . 4 (𝑇 ∈ Tarski → ( 𝐴𝑇 → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇)))
1241233ad2ant1 1132 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ( 𝐴𝑇 → ∃𝑓 𝑓: 𝐴1-1-onto→(card‘𝑇)))
125118, 124mtod 198 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ¬ 𝐴𝑇)
126 uniss 4919 . . . . . . . . 9 (𝐴𝑇 𝐴 𝑇)
127 df-tr 5265 . . . . . . . . . 10 (Tr 𝑇 𝑇𝑇)
128127biimpi 216 . . . . . . . . 9 (Tr 𝑇 𝑇𝑇)
129126, 128sylan9ss 4008 . . . . . . . 8 ((𝐴𝑇 ∧ Tr 𝑇) → 𝐴𝑇)
130129expcom 413 . . . . . . 7 (Tr 𝑇 → (𝐴𝑇 𝐴𝑇))
13157, 130syld 47 . . . . . 6 (Tr 𝑇 → (𝐴𝑇 𝐴𝑇))
132131imp 406 . . . . 5 ((Tr 𝑇𝐴𝑇) → 𝐴𝑇)
133 tsken 10791 . . . . 5 ((𝑇 ∈ Tarski ∧ 𝐴𝑇) → ( 𝐴𝑇 𝐴𝑇))
134132, 133sylan2 593 . . . 4 ((𝑇 ∈ Tarski ∧ (Tr 𝑇𝐴𝑇)) → ( 𝐴𝑇 𝐴𝑇))
1351343impb 1114 . . 3 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → ( 𝐴𝑇 𝐴𝑇))
136135ord 864 . 2 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → (¬ 𝐴𝑇 𝐴𝑇))
137125, 136mpd 15 1 ((𝑇 ∈ Tarski ∧ Tr 𝑇𝐴𝑇) → 𝐴𝑇)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wo 847  w3a 1086   = wceq 1536  wex 1775  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  wss 3962  c0 4338  𝒫 cpw 4604   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230  Tr wtr 5264  dom cdm 5688  ran crn 5689  cima 5691  Oncon0 6385  Lim wlim 6386   Fn wfn 6557  wf 6558  1-1wf1 6559  ontowfo 6560  1-1-ontowf1o 6561  cfv 6562  cen 8980  cdom 8981  csdm 8982  cardccrd 9972  cfccf 9974  Inaccwcwina 10719  Inacccina 10720  Tarskictsk 10785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-ac2 10500
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-smo 8384  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-oi 9547  df-har 9594  df-r1 9801  df-card 9976  df-aleph 9977  df-cf 9978  df-acn 9979  df-ac 10153  df-wina 10721  df-ina 10722  df-tsk 10786
This theorem is referenced by:  tskwun  10821  tskint  10822  tskun  10823  tskurn  10826  pwinfi3  43552
  Copyright terms: Public domain W3C validator