MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cotr Structured version   Visualization version   GIF version

Theorem cotr 6102
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 6099. (Contributed by NM, 27-Dec-1996.)
Assertion
Ref Expression
cotr ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Distinct variable group:   𝑥,𝑦,𝑧,𝑅

Proof of Theorem cotr
StepHypRef Expression
1 cotrg 6099 1 ((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1531  wss 3941   class class class wbr 5139  ccom 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-xp 5673  df-rel 5674  df-co 5676
This theorem is referenced by:  xpidtr  6114  trin2  6115  dfer2  8701  trclfvcotr  14954  pslem  18529  letsr  18550  dirtr  18559  filnetlem3  35756  dftrrels3  37940  dftrrel3  37942  dfeqvrels3  37953  cotrintab  42879  iunrelexpuztr  42984
  Copyright terms: Public domain W3C validator