Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cotr | Structured version Visualization version GIF version |
Description: Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 6005. (Contributed by NM, 27-Dec-1996.) |
Ref | Expression |
---|---|
cotr | ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cotrg 6005 | 1 ⊢ ((𝑅 ∘ 𝑅) ⊆ 𝑅 ↔ ∀𝑥∀𝑦∀𝑧((𝑥𝑅𝑦 ∧ 𝑦𝑅𝑧) → 𝑥𝑅𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ⊆ wss 3883 class class class wbr 5070 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-co 5589 |
This theorem is referenced by: xpidtr 6016 trin2 6017 dfer2 8457 trclfvcotr 14648 pslem 18205 letsr 18226 dirtr 18235 filnetlem3 34496 dftrrels3 36617 dftrrel3 36619 dfeqvrels3 36629 cotrintab 41111 iunrelexpuztr 41216 |
Copyright terms: Public domain | W3C validator |