![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dftr3 | Structured version Visualization version GIF version |
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
dftr3 | ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr5 5287 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
2 | dfss3 3997 | . . 3 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
3 | 2 | ralbii 3099 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
4 | 1, 3 | bitr4i 278 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 ∀wral 3067 ⊆ wss 3976 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 |
This theorem is referenced by: trss 5294 trin 5295 triun 5298 triin 5300 tron 6418 ssorduni 7814 sucexeloniOLD 7846 suceloniOLD 7848 dfrecs3 8428 dfrecs3OLD 8429 ordtypelem2 9588 tcwf 9952 itunitc 10490 wunex2 10807 wfgru 10885 nadd2rabtr 43346 trwf 44909 |
Copyright terms: Public domain | W3C validator |