MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr3 Structured version   Visualization version   GIF version

Theorem dftr3 5235
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dftr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr5 5233 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
2 dfss3 3947 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
32ralbii 3082 . 2 (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
41, 3bitr4i 278 1 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2108  wral 3051  wss 3926  Tr wtr 5229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-v 3461  df-ss 3943  df-uni 4884  df-tr 5230
This theorem is referenced by:  trss  5240  trin  5241  triun  5244  triin  5246  tron  6375  ssorduni  7773  sucexeloniOLD  7804  suceloniOLD  7806  dfrecs3  8386  dfrecs3OLD  8387  ordtypelem2  9533  tcwf  9897  itunitc  10435  wunex2  10752  wfgru  10830  nadd2rabtr  43408  trwf  44984
  Copyright terms: Public domain W3C validator