Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dftr3 | Structured version Visualization version GIF version |
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.) |
Ref | Expression |
---|---|
dftr3 | ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dftr5 5190 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
2 | dfss3 3905 | . . 3 ⊢ (𝑥 ⊆ 𝐴 ↔ ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) | |
3 | 2 | ralbii 3090 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
4 | 1, 3 | bitr4i 277 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 ∀wral 3063 ⊆ wss 3883 Tr wtr 5187 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-uni 4837 df-tr 5188 |
This theorem is referenced by: trss 5196 trin 5197 triun 5200 triin 5202 tron 6274 ssorduni 7606 suceloni 7635 dfrecs3 8174 dfrecs3OLD 8175 ordtypelem2 9208 tcwf 9572 itunitc 10108 wunex2 10425 wfgru 10503 |
Copyright terms: Public domain | W3C validator |