MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr3 Structured version   Visualization version   GIF version

Theorem dftr3 5205
Description: An alternate way of defining a transitive class. Definition 7.1 of [TakeutiZaring] p. 35. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr3 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem dftr3
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dftr5 5204 . 2 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
2 dfss3 3919 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦𝐴)
32ralbii 3079 . 2 (∀𝑥𝐴 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
41, 3bitr4i 278 1 (Tr 𝐴 ↔ ∀𝑥𝐴 𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wcel 2113  wral 3048  wss 3898  Tr wtr 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-v 3439  df-ss 3915  df-uni 4859  df-tr 5201
This theorem is referenced by:  trss  5210  trin  5211  triun  5214  triin  5216  tron  6334  ssorduni  7718  dfrecs3  8298  ordtypelem2  9412  tcwf  9783  itunitc  10319  wunex2  10636  wfgru  10714  nadd2rabtr  43501  trwf  45076
  Copyright terms: Public domain W3C validator