| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwtr | Structured version Visualization version GIF version | ||
| Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
| Ref | Expression |
|---|---|
| pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unipw 5405 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
| 2 | 1 | sseq1i 3972 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| 3 | df-tr 5210 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
| 4 | dftr4 5216 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
| 5 | 2, 3, 4 | 3bitr4ri 304 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 Tr wtr 5209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-v 3446 df-un 3916 df-ss 3928 df-pw 4561 df-sn 4586 df-pr 4588 df-uni 4868 df-tr 5210 |
| This theorem is referenced by: r1tr 9705 itunitc1 10349 |
| Copyright terms: Public domain | W3C validator |