Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwtr | Structured version Visualization version GIF version |
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5359 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | 1 | sseq1i 3946 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
3 | df-tr 5186 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
4 | dftr4 5190 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
5 | 2, 3, 4 | 3bitr4ri 307 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ⊆ wss 3884 𝒫 cpw 4530 ∪ cuni 4836 Tr wtr 5185 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-11 2160 ax-ext 2710 ax-sep 5216 ax-nul 5223 ax-pr 5346 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2073 df-clab 2717 df-cleq 2731 df-clel 2818 df-ral 3069 df-v 3425 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-pw 4532 df-sn 4559 df-pr 4561 df-uni 4837 df-tr 5186 |
This theorem is referenced by: r1tr 9440 itunitc1 10082 |
Copyright terms: Public domain | W3C validator |