![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwtr | Structured version Visualization version GIF version |
Description: A class is transitive iff its power class is transitive. (Contributed by Alan Sare, 25-Aug-2011.) (Revised by Mario Carneiro, 15-Jun-2014.) |
Ref | Expression |
---|---|
pwtr | ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unipw 5470 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
2 | 1 | sseq1i 4037 | . 2 ⊢ (∪ 𝒫 𝐴 ⊆ 𝒫 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
3 | df-tr 5284 | . 2 ⊢ (Tr 𝒫 𝐴 ↔ ∪ 𝒫 𝐴 ⊆ 𝒫 𝐴) | |
4 | dftr4 5290 | . 2 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) | |
5 | 2, 3, 4 | 3bitr4ri 304 | 1 ⊢ (Tr 𝐴 ↔ Tr 𝒫 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-v 3490 df-un 3981 df-ss 3993 df-pw 4624 df-sn 4649 df-pr 4651 df-uni 4932 df-tr 5284 |
This theorem is referenced by: r1tr 9845 itunitc1 10489 |
Copyright terms: Public domain | W3C validator |