| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisuc | Structured version Visualization version GIF version | ||
| Description: A transitive class is equal to the union of its successor, inference form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisuc.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisucg 6429 | . 2 ⊢ (𝐴 ∈ V → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∪ cuni 4881 Tr wtr 5227 suc csuc 6352 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3459 df-un 3929 df-ss 3941 df-sn 4600 df-pr 4602 df-uni 4882 df-tr 5228 df-suc 6356 |
| This theorem is referenced by: ordunisuc 7821 |
| Copyright terms: Public domain | W3C validator |