Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisuc | Structured version Visualization version GIF version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4110 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
2 | df-tr 5188 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
3 | df-suc 6257 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | unieqi 4849 | . . . 4 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
5 | uniun 4861 | . . . 4 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
6 | unisuc.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
7 | 6 | unisn 4858 | . . . . 5 ⊢ ∪ {𝐴} = 𝐴 |
8 | 7 | uneq2i 4090 | . . . 4 ⊢ (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴) |
9 | 4, 5, 8 | 3eqtri 2770 | . . 3 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴) |
10 | 9 | eqeq1i 2743 | . 2 ⊢ (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
11 | 1, 2, 10 | 3bitr4i 302 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 ⊆ wss 3883 {csn 4558 ∪ cuni 4836 Tr wtr 5187 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-in 3890 df-ss 3900 df-sn 4559 df-pr 4561 df-uni 4837 df-tr 5188 df-suc 6257 |
This theorem is referenced by: onunisuci 6365 ordunisuc 7654 |
Copyright terms: Public domain | W3C validator |