MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisuc Structured version   Visualization version   GIF version

Theorem unisuc 6342
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 4114 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 5192 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 6272 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 4852 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 4864 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 4861 . . . . 5 {𝐴} = 𝐴
87uneq2i 4094 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2770 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2743 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 303 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wcel 2106  Vcvv 3432  cun 3885  wss 3887  {csn 4561   cuni 4839  Tr wtr 5191  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-in 3894  df-ss 3904  df-sn 4562  df-pr 4564  df-uni 4840  df-tr 5192  df-suc 6272
This theorem is referenced by:  onunisuci  6380  ordunisuc  7679
  Copyright terms: Public domain W3C validator