![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisuc | Structured version Visualization version GIF version |
Description: A transitive class is equal to the union of its successor, inference form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unisuc.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | unisucg 6399 | . 2 ⊢ (𝐴 ∈ V → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∪ cuni 4869 Tr wtr 5226 suc csuc 6323 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3449 df-un 3919 df-in 3921 df-ss 3931 df-sn 4591 df-pr 4593 df-uni 4870 df-tr 5227 df-suc 6327 |
This theorem is referenced by: ordunisuc 7771 |
Copyright terms: Public domain | W3C validator |