Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > unisuc | Structured version Visualization version GIF version |
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
Ref | Expression |
---|---|
unisuc.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4094 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
2 | df-tr 5162 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
3 | df-suc 6219 | . . . . 5 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
4 | 3 | unieqi 4832 | . . . 4 ⊢ ∪ suc 𝐴 = ∪ (𝐴 ∪ {𝐴}) |
5 | uniun 4844 | . . . 4 ⊢ ∪ (𝐴 ∪ {𝐴}) = (∪ 𝐴 ∪ ∪ {𝐴}) | |
6 | unisuc.1 | . . . . . 6 ⊢ 𝐴 ∈ V | |
7 | 6 | unisn 4841 | . . . . 5 ⊢ ∪ {𝐴} = 𝐴 |
8 | 7 | uneq2i 4074 | . . . 4 ⊢ (∪ 𝐴 ∪ ∪ {𝐴}) = (∪ 𝐴 ∪ 𝐴) |
9 | 4, 5, 8 | 3eqtri 2769 | . . 3 ⊢ ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴) |
10 | 9 | eqeq1i 2742 | . 2 ⊢ (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) |
11 | 1, 2, 10 | 3bitr4i 306 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∈ wcel 2110 Vcvv 3408 ∪ cun 3864 ⊆ wss 3866 {csn 4541 ∪ cuni 4819 Tr wtr 5161 suc csuc 6215 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-un 3871 df-in 3873 df-ss 3883 df-sn 4542 df-pr 4544 df-uni 4820 df-tr 5162 df-suc 6219 |
This theorem is referenced by: onunisuci 6327 ordunisuc 7611 |
Copyright terms: Public domain | W3C validator |