MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisuc Structured version   Visualization version   GIF version

Theorem unisuc 6269
Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.)
Hypothesis
Ref Expression
unisuc.1 𝐴 ∈ V
Assertion
Ref Expression
unisuc (Tr 𝐴 suc 𝐴 = 𝐴)

Proof of Theorem unisuc
StepHypRef Expression
1 ssequn1 4158 . 2 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
2 df-tr 5175 . 2 (Tr 𝐴 𝐴𝐴)
3 df-suc 6199 . . . . 5 suc 𝐴 = (𝐴 ∪ {𝐴})
43unieqi 4853 . . . 4 suc 𝐴 = (𝐴 ∪ {𝐴})
5 uniun 4863 . . . 4 (𝐴 ∪ {𝐴}) = ( 𝐴 {𝐴})
6 unisuc.1 . . . . . 6 𝐴 ∈ V
76unisn 4860 . . . . 5 {𝐴} = 𝐴
87uneq2i 4138 . . . 4 ( 𝐴 {𝐴}) = ( 𝐴𝐴)
94, 5, 83eqtri 2850 . . 3 suc 𝐴 = ( 𝐴𝐴)
109eqeq1i 2828 . 2 ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴)
111, 2, 103bitr4i 305 1 (Tr 𝐴 suc 𝐴 = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 208   = wceq 1537  wcel 2114  Vcvv 3496  cun 3936  wss 3938  {csn 4569   cuni 4840  Tr wtr 5174  suc csuc 6195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-v 3498  df-un 3943  df-in 3945  df-ss 3954  df-sn 4570  df-pr 4572  df-uni 4841  df-tr 5175  df-suc 6199
This theorem is referenced by:  onunisuci  6306  ordunisuc  7549
  Copyright terms: Public domain W3C validator