| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisuc | Structured version Visualization version GIF version | ||
| Description: A transitive class is equal to the union of its successor, inference form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) |
| Ref | Expression |
|---|---|
| unisuc.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| unisuc | ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unisuc.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | unisucg 6412 | . 2 ⊢ (𝐴 ∈ V → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cuni 4871 Tr wtr 5214 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-un 3919 df-ss 3931 df-sn 4590 df-pr 4592 df-uni 4872 df-tr 5215 df-suc 6338 |
| This theorem is referenced by: ordunisuc 7807 |
| Copyright terms: Public domain | W3C validator |