| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4885 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 2 | 1 | sseq1d 3981 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
| 3 | sseq2 3976 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
| 4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
| 5 | df-tr 5218 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 6 | df-tr 5218 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3917 ∪ cuni 4874 Tr wtr 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 |
| This theorem is referenced by: truni 5233 trint 5235 ordeq 6342 trcl 9688 tz9.1 9689 tz9.1c 9690 tctr 9700 tcmin 9701 tc2 9702 r1tr 9736 r1elssi 9765 tcrank 9844 iswun 10664 tskr1om2 10728 elgrug 10752 grutsk 10782 dfon2lem1 35778 dfon2lem3 35780 dfon2lem4 35781 dfon2lem5 35782 dfon2lem6 35783 dfon2lem7 35784 dfon2lem8 35785 dfon2 35787 dford3lem1 43022 dford3lem2 43023 nadd1rabtr 43384 wfaxext 44990 wfaxrep 44991 wfaxpow 44994 wfaxinf2 44998 wfac8prim 44999 |
| Copyright terms: Public domain | W3C validator |