MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5197
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4850 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3952 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3947 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 278 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5192 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5192 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 314 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3887   cuni 4839  Tr wtr 5191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-uni 4840  df-tr 5192
This theorem is referenced by:  truni  5205  trint  5207  ordeq  6273  trcl  9486  tz9.1  9487  tz9.1c  9488  tctr  9498  tcmin  9499  tc2  9500  r1tr  9534  r1elssi  9563  tcrank  9642  iswun  10460  tskr1om2  10524  elgrug  10548  grutsk  10578  dfon2lem1  33759  dfon2lem3  33761  dfon2lem4  33762  dfon2lem5  33763  dfon2lem6  33764  dfon2lem7  33765  dfon2lem8  33766  dfon2  33768  dford3lem1  40848  dford3lem2  40849
  Copyright terms: Public domain W3C validator