MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5291
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4942 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 4040 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 4035 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 279 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5284 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5284 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 314 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wss 3976   cuni 4931  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932  df-tr 5284
This theorem is referenced by:  truni  5299  trint  5301  ordeq  6402  trcl  9797  tz9.1  9798  tz9.1c  9799  tctr  9809  tcmin  9810  tc2  9811  r1tr  9845  r1elssi  9874  tcrank  9953  iswun  10773  tskr1om2  10837  elgrug  10861  grutsk  10891  dfon2lem1  35747  dfon2lem3  35749  dfon2lem4  35750  dfon2lem5  35751  dfon2lem6  35752  dfon2lem7  35753  dfon2lem8  35754  dfon2  35756  dford3lem1  42983  dford3lem2  42984  nadd1rabtr  43350
  Copyright terms: Public domain W3C validator