MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5273
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4919 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 4011 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 4006 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 279 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5266 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5266 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 314 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wss 3947   cuni 4908  Tr wtr 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-v 3473  df-in 3954  df-ss 3964  df-uni 4909  df-tr 5266
This theorem is referenced by:  truni  5281  trint  5283  ordeq  6376  trcl  9752  tz9.1  9753  tz9.1c  9754  tctr  9764  tcmin  9765  tc2  9766  r1tr  9800  r1elssi  9829  tcrank  9908  iswun  10728  tskr1om2  10792  elgrug  10816  grutsk  10846  dfon2lem1  35379  dfon2lem3  35381  dfon2lem4  35382  dfon2lem5  35383  dfon2lem6  35384  dfon2lem7  35385  dfon2lem8  35386  dfon2  35388  dford3lem1  42447  dford3lem2  42448  nadd1rabtr  42817
  Copyright terms: Public domain W3C validator