| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4878 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 2 | 1 | sseq1d 3975 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
| 3 | sseq2 3970 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
| 4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
| 5 | df-tr 5210 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 6 | df-tr 5210 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3911 ∪ cuni 4867 Tr wtr 5209 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-uni 4868 df-tr 5210 |
| This theorem is referenced by: truni 5225 trint 5227 ordeq 6327 trcl 9657 tz9.1 9658 tz9.1c 9659 tctr 9669 tcmin 9670 tc2 9671 r1tr 9705 r1elssi 9734 tcrank 9813 iswun 10633 tskr1om2 10697 elgrug 10721 grutsk 10751 dfon2lem1 35764 dfon2lem3 35766 dfon2lem4 35767 dfon2lem5 35768 dfon2lem6 35769 dfon2lem7 35770 dfon2lem8 35771 dfon2 35773 dford3lem1 43008 dford3lem2 43009 nadd1rabtr 43370 wfaxext 44976 wfaxrep 44977 wfaxpow 44980 wfaxinf2 44984 wfac8prim 44985 |
| Copyright terms: Public domain | W3C validator |