MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5225
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4885 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3981 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3976 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 279 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5218 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5218 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 314 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wss 3917   cuni 4874  Tr wtr 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-uni 4875  df-tr 5218
This theorem is referenced by:  truni  5233  trint  5235  ordeq  6342  trcl  9688  tz9.1  9689  tz9.1c  9690  tctr  9700  tcmin  9701  tc2  9702  r1tr  9736  r1elssi  9765  tcrank  9844  iswun  10664  tskr1om2  10728  elgrug  10752  grutsk  10782  dfon2lem1  35778  dfon2lem3  35780  dfon2lem4  35781  dfon2lem5  35782  dfon2lem6  35783  dfon2lem7  35784  dfon2lem8  35785  dfon2  35787  dford3lem1  43022  dford3lem2  43023  nadd1rabtr  43384  wfaxext  44990  wfaxrep  44991  wfaxpow  44994  wfaxinf2  44998  wfac8prim  44999
  Copyright terms: Public domain W3C validator