| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4867 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 2 | 1 | sseq1d 3961 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
| 3 | sseq2 3956 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
| 4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
| 5 | df-tr 5197 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 6 | df-tr 5197 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ⊆ wss 3897 ∪ cuni 4856 Tr wtr 5196 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-tr 5197 |
| This theorem is referenced by: truni 5211 trint 5213 ordeq 6313 trcl 9618 tz9.1 9619 tz9.1c 9620 tctr 9628 tcmin 9629 tc2 9630 r1tr 9669 r1elssi 9698 tcrank 9777 iswun 10595 tskr1om2 10659 elgrug 10683 grutsk 10713 tz9.1regs 35130 dfon2lem1 35825 dfon2lem3 35827 dfon2lem4 35828 dfon2lem5 35829 dfon2lem6 35830 dfon2lem7 35831 dfon2lem8 35832 dfon2 35834 dford3lem1 43129 dford3lem2 43130 nadd1rabtr 43491 wfaxext 45096 wfaxrep 45097 wfaxpow 45100 wfaxinf2 45104 wfac8prim 45105 |
| Copyright terms: Public domain | W3C validator |