| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version | ||
| Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
| Ref | Expression |
|---|---|
| treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | unieq 4882 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
| 2 | 1 | sseq1d 3978 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
| 3 | sseq2 3973 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
| 4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
| 5 | df-tr 5215 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 6 | df-tr 5215 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ⊆ wss 3914 ∪ cuni 4871 Tr wtr 5214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 |
| This theorem is referenced by: truni 5230 trint 5232 ordeq 6339 trcl 9681 tz9.1 9682 tz9.1c 9683 tctr 9693 tcmin 9694 tc2 9695 r1tr 9729 r1elssi 9758 tcrank 9837 iswun 10657 tskr1om2 10721 elgrug 10745 grutsk 10775 dfon2lem1 35771 dfon2lem3 35773 dfon2lem4 35774 dfon2lem5 35775 dfon2lem6 35776 dfon2lem7 35777 dfon2lem8 35778 dfon2 35780 dford3lem1 43015 dford3lem2 43016 nadd1rabtr 43377 wfaxext 44983 wfaxrep 44984 wfaxpow 44987 wfaxinf2 44991 wfac8prim 44992 |
| Copyright terms: Public domain | W3C validator |