![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4942 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
2 | 1 | sseq1d 4040 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
3 | sseq2 4035 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
5 | df-tr 5284 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
6 | df-tr 5284 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ⊆ wss 3976 ∪ cuni 4931 Tr wtr 5283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-tr 5284 |
This theorem is referenced by: truni 5299 trint 5301 ordeq 6402 trcl 9797 tz9.1 9798 tz9.1c 9799 tctr 9809 tcmin 9810 tc2 9811 r1tr 9845 r1elssi 9874 tcrank 9953 iswun 10773 tskr1om2 10837 elgrug 10861 grutsk 10891 dfon2lem1 35747 dfon2lem3 35749 dfon2lem4 35750 dfon2lem5 35751 dfon2lem6 35752 dfon2lem7 35753 dfon2lem8 35754 dfon2 35756 dford3lem1 42983 dford3lem2 42984 nadd1rabtr 43350 |
Copyright terms: Public domain | W3C validator |