MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5193
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4847 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3948 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3943 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 278 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5188 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5188 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 313 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wss 3883   cuni 4836  Tr wtr 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-uni 4837  df-tr 5188
This theorem is referenced by:  truni  5201  trint  5203  ordeq  6258  trcl  9417  tz9.1  9418  tz9.1c  9419  tctr  9429  tcmin  9430  tc2  9431  r1tr  9465  r1elssi  9494  tcrank  9573  iswun  10391  tskr1om2  10455  elgrug  10479  grutsk  10509  dfon2lem1  33665  dfon2lem3  33667  dfon2lem4  33668  dfon2lem5  33669  dfon2lem6  33670  dfon2lem7  33671  dfon2lem8  33672  dfon2  33674  dford3lem1  40764  dford3lem2  40765
  Copyright terms: Public domain W3C validator