MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5206
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4869 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3967 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3962 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 279 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5200 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5200 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 314 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wss 3903   cuni 4858  Tr wtr 5199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-ss 3920  df-uni 4859  df-tr 5200
This theorem is referenced by:  truni  5214  trint  5216  ordeq  6314  trcl  9624  tz9.1  9625  tz9.1c  9626  tctr  9636  tcmin  9637  tc2  9638  r1tr  9672  r1elssi  9701  tcrank  9780  iswun  10598  tskr1om2  10662  elgrug  10686  grutsk  10716  tz9.1regs  35067  dfon2lem1  35761  dfon2lem3  35763  dfon2lem4  35764  dfon2lem5  35765  dfon2lem6  35766  dfon2lem7  35767  dfon2lem8  35768  dfon2  35770  dford3lem1  43003  dford3lem2  43004  nadd1rabtr  43365  wfaxext  44971  wfaxrep  44972  wfaxpow  44975  wfaxinf2  44979  wfac8prim  44980
  Copyright terms: Public domain W3C validator