![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4919 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
2 | 1 | sseq1d 4011 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
3 | sseq2 4006 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
5 | df-tr 5266 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
6 | df-tr 5266 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 ⊆ wss 3947 ∪ cuni 4908 Tr wtr 5265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-v 3473 df-in 3954 df-ss 3964 df-uni 4909 df-tr 5266 |
This theorem is referenced by: truni 5281 trint 5283 ordeq 6376 trcl 9752 tz9.1 9753 tz9.1c 9754 tctr 9764 tcmin 9765 tc2 9766 r1tr 9800 r1elssi 9829 tcrank 9908 iswun 10728 tskr1om2 10792 elgrug 10816 grutsk 10846 dfon2lem1 35379 dfon2lem3 35381 dfon2lem4 35382 dfon2lem5 35383 dfon2lem6 35384 dfon2lem7 35385 dfon2lem8 35386 dfon2 35388 dford3lem1 42447 dford3lem2 42448 nadd1rabtr 42817 |
Copyright terms: Public domain | W3C validator |