MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  treq Structured version   Visualization version   GIF version

Theorem treq 5217
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.)
Assertion
Ref Expression
treq (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))

Proof of Theorem treq
StepHypRef Expression
1 unieq 4878 . . . 4 (𝐴 = 𝐵 𝐴 = 𝐵)
21sseq1d 3975 . . 3 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐴))
3 sseq2 3970 . . 3 (𝐴 = 𝐵 → ( 𝐵𝐴 𝐵𝐵))
42, 3bitrd 279 . 2 (𝐴 = 𝐵 → ( 𝐴𝐴 𝐵𝐵))
5 df-tr 5210 . 2 (Tr 𝐴 𝐴𝐴)
6 df-tr 5210 . 2 (Tr 𝐵 𝐵𝐵)
74, 5, 63bitr4g 314 1 (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wss 3911   cuni 4867  Tr wtr 5209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-ss 3928  df-uni 4868  df-tr 5210
This theorem is referenced by:  truni  5225  trint  5227  ordeq  6327  trcl  9657  tz9.1  9658  tz9.1c  9659  tctr  9669  tcmin  9670  tc2  9671  r1tr  9705  r1elssi  9734  tcrank  9813  iswun  10633  tskr1om2  10697  elgrug  10721  grutsk  10751  dfon2lem1  35744  dfon2lem3  35746  dfon2lem4  35747  dfon2lem5  35748  dfon2lem6  35749  dfon2lem7  35750  dfon2lem8  35751  dfon2  35753  dford3lem1  42988  dford3lem2  42989  nadd1rabtr  43350  wfaxext  44956  wfaxrep  44957  wfaxpow  44960  wfaxinf2  44964  wfac8prim  44965
  Copyright terms: Public domain W3C validator