Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > treq | Structured version Visualization version GIF version |
Description: Equality theorem for the transitive class predicate. (Contributed by NM, 17-Sep-1993.) |
Ref | Expression |
---|---|
treq | ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unieq 4809 | . . . 4 ⊢ (𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵) | |
2 | 1 | sseq1d 3923 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐴)) |
3 | sseq2 3918 | . . 3 ⊢ (𝐴 = 𝐵 → (∪ 𝐵 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) | |
4 | 2, 3 | bitrd 282 | . 2 ⊢ (𝐴 = 𝐵 → (∪ 𝐴 ⊆ 𝐴 ↔ ∪ 𝐵 ⊆ 𝐵)) |
5 | df-tr 5139 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
6 | df-tr 5139 | . 2 ⊢ (Tr 𝐵 ↔ ∪ 𝐵 ⊆ 𝐵) | |
7 | 4, 5, 6 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → (Tr 𝐴 ↔ Tr 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 = wceq 1538 ⊆ wss 3858 ∪ cuni 4798 Tr wtr 5138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1541 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-v 3411 df-in 3865 df-ss 3875 df-uni 4799 df-tr 5139 |
This theorem is referenced by: truni 5152 trint 5154 ordeq 6176 trcl 9203 tz9.1 9204 tz9.1c 9205 tctr 9215 tcmin 9216 tc2 9217 r1tr 9238 r1elssi 9267 tcrank 9346 iswun 10164 tskr1om2 10228 elgrug 10252 grutsk 10282 dfon2lem1 33275 dfon2lem3 33277 dfon2lem4 33278 dfon2lem5 33279 dfon2lem6 33280 dfon2lem7 33281 dfon2lem8 33282 dfon2 33284 dford3lem1 40340 dford3lem2 40341 |
Copyright terms: Public domain | W3C validator |