| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr4 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| dftr4 | ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 5199 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | sspwuni 5048 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊆ wss 3902 𝒫 cpw 4550 ∪ cuni 4859 Tr wtr 5198 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-v 3438 df-ss 3919 df-pw 4552 df-uni 4860 df-tr 5199 |
| This theorem is referenced by: tr0 5210 pwtr 5393 r1ordg 9668 r1sssuc 9673 r1val1 9676 ackbij2lem3 10128 tsktrss 10649 |
| Copyright terms: Public domain | W3C validator |