| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr4 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.) |
| Ref | Expression |
|---|---|
| dftr4 | ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tr 5201 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 2 | sspwuni 5050 | . 2 ⊢ (𝐴 ⊆ 𝒫 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 1, 2 | bitr4i 278 | 1 ⊢ (Tr 𝐴 ↔ 𝐴 ⊆ 𝒫 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ⊆ wss 3898 𝒫 cpw 4549 ∪ cuni 4858 Tr wtr 5200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-v 3439 df-ss 3915 df-pw 4551 df-uni 4859 df-tr 5201 |
| This theorem is referenced by: tr0 5212 pwtr 5395 r1ordg 9678 r1sssuc 9683 r1val1 9686 ackbij2lem3 10138 tsktrss 10659 |
| Copyright terms: Public domain | W3C validator |