MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr4 Structured version   Visualization version   GIF version

Theorem dftr4 5290
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 5284 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 5123 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 278 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wss 3976  𝒫 cpw 4622   cuni 4931  Tr wtr 5283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-v 3490  df-ss 3993  df-pw 4624  df-uni 4932  df-tr 5284
This theorem is referenced by:  tr0  5296  pwtr  5472  r1ordg  9847  r1sssuc  9852  r1val1  9855  ackbij2lem3  10309  tsktrss  10830
  Copyright terms: Public domain W3C validator