MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr4 Structured version   Visualization version   GIF version

Theorem dftr4 5208
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 5203 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 5052 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 278 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wss 3905  𝒫 cpw 4553   cuni 4861  Tr wtr 5202
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-v 3440  df-ss 3922  df-pw 4555  df-uni 4862  df-tr 5203
This theorem is referenced by:  tr0  5214  pwtr  5399  r1ordg  9693  r1sssuc  9698  r1val1  9701  ackbij2lem3  10153  tsktrss  10674
  Copyright terms: Public domain W3C validator