MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr4 Structured version   Visualization version   GIF version

Theorem dftr4 5271
Description: An alternate way of defining a transitive class. Definition of [Enderton] p. 71. (Contributed by NM, 29-Aug-1993.)
Assertion
Ref Expression
dftr4 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)

Proof of Theorem dftr4
StepHypRef Expression
1 df-tr 5265 . 2 (Tr 𝐴 𝐴𝐴)
2 sspwuni 5102 . 2 (𝐴 ⊆ 𝒫 𝐴 𝐴𝐴)
31, 2bitr4i 277 1 (Tr 𝐴𝐴 ⊆ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wss 3947  𝒫 cpw 4601   cuni 4907  Tr wtr 5264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-v 3476  df-in 3954  df-ss 3964  df-pw 4603  df-uni 4908  df-tr 5265
This theorem is referenced by:  tr0  5277  pwtr  5451  r1ordg  9769  r1sssuc  9774  r1val1  9777  ackbij2lem3  10232  tsktrss  10752
  Copyright terms: Public domain W3C validator