MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc2 Structured version   Visualization version   GIF version

Theorem tc2 9637
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing 𝐴 as a member, gives almost the same set, except that 𝐴 itself must be added because it is not usually a member of (TC‘𝐴) (and it is never a member if 𝐴 is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1 𝐴 ∈ V
Assertion
Ref Expression
tc2 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Distinct variable group:   𝑥,𝐴

Proof of Theorem tc2
StepHypRef Expression
1 tc2.1 . . . . 5 𝐴 ∈ V
2 tcvalg 9633 . . . . 5 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
31, 2ax-mp 5 . . . 4 (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
4 trss 5210 . . . . . . 7 (Tr 𝑥 → (𝐴𝑥𝐴𝑥))
54imdistanri 569 . . . . . 6 ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴𝑥 ∧ Tr 𝑥))
65ss2abi 4015 . . . . 5 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
7 intss 4919 . . . . 5 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
86, 7ax-mp 5 . . . 4 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
93, 8eqsstri 3977 . . 3 (TC‘𝐴) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
101elintab 4909 . . . . 5 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥))
11 simpl 482 . . . . 5 ((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥)
1210, 11mpgbir 1800 . . . 4 𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
131snss 4736 . . . 4 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
1412, 13mpbi 230 . . 3 {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
159, 14unssi 4140 . 2 ((TC‘𝐴) ∪ {𝐴}) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
161snid 4614 . . . . 5 𝐴 ∈ {𝐴}
17 elun2 4132 . . . . 5 (𝐴 ∈ {𝐴} → 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}))
1816, 17ax-mp 5 . . . 4 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})
19 uniun 4881 . . . . . . 7 ((TC‘𝐴) ∪ {𝐴}) = ( (TC‘𝐴) ∪ {𝐴})
20 tctr 9635 . . . . . . . . 9 Tr (TC‘𝐴)
21 df-tr 5201 . . . . . . . . 9 (Tr (TC‘𝐴) ↔ (TC‘𝐴) ⊆ (TC‘𝐴))
2220, 21mpbi 230 . . . . . . . 8 (TC‘𝐴) ⊆ (TC‘𝐴)
231unisn 4877 . . . . . . . . 9 {𝐴} = 𝐴
24 tcid 9634 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
251, 24ax-mp 5 . . . . . . . . 9 𝐴 ⊆ (TC‘𝐴)
2623, 25eqsstri 3977 . . . . . . . 8 {𝐴} ⊆ (TC‘𝐴)
2722, 26unssi 4140 . . . . . . 7 ( (TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
2819, 27eqsstri 3977 . . . . . 6 ((TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
29 ssun1 4127 . . . . . 6 (TC‘𝐴) ⊆ ((TC‘𝐴) ∪ {𝐴})
3028, 29sstri 3940 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴})
31 df-tr 5201 . . . . 5 (Tr ((TC‘𝐴) ∪ {𝐴}) ↔ ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴}))
3230, 31mpbir 231 . . . 4 Tr ((TC‘𝐴) ∪ {𝐴})
33 fvex 6841 . . . . . 6 (TC‘𝐴) ∈ V
34 snex 5376 . . . . . 6 {𝐴} ∈ V
3533, 34unex 7683 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ∈ V
36 eleq2 2822 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (𝐴𝑥𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})))
37 treq 5207 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (Tr 𝑥 ↔ Tr ((TC‘𝐴) ∪ {𝐴})))
3836, 37anbi12d 632 . . . . 5 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴}))))
3935, 38elab 3631 . . . 4 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴})))
4018, 32, 39mpbir2an 711 . . 3 ((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
41 intss1 4913 . . 3 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴}))
4240, 41ax-mp 5 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴})
4315, 42eqssi 3947 1 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  Vcvv 3437  cun 3896  wss 3898  {csn 4575   cuni 4858   cint 4897  Tr wtr 5200  cfv 6486  TCctc 9631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674  ax-inf2 9538
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-tc 9632
This theorem is referenced by:  tcsni  9638
  Copyright terms: Public domain W3C validator