MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc2 Structured version   Visualization version   GIF version

Theorem tc2 9186
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing 𝐴 as a member, gives almost the same set, except that 𝐴 itself must be added because it is not usually a member of (TC‘𝐴) (and it is never a member if 𝐴 is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1 𝐴 ∈ V
Assertion
Ref Expression
tc2 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Distinct variable group:   𝑥,𝐴

Proof of Theorem tc2
StepHypRef Expression
1 tc2.1 . . . . 5 𝐴 ∈ V
2 tcvalg 9182 . . . . 5 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
31, 2ax-mp 5 . . . 4 (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
4 trss 5183 . . . . . . 7 (Tr 𝑥 → (𝐴𝑥𝐴𝑥))
54imdistanri 572 . . . . . 6 ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴𝑥 ∧ Tr 𝑥))
65ss2abi 4045 . . . . 5 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
7 intss 4899 . . . . 5 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
86, 7ax-mp 5 . . . 4 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
93, 8eqsstri 4003 . . 3 (TC‘𝐴) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
101elintab 4889 . . . . 5 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥))
11 simpl 485 . . . . 5 ((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥)
1210, 11mpgbir 1800 . . . 4 𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
131snss 4720 . . . 4 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
1412, 13mpbi 232 . . 3 {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
159, 14unssi 4163 . 2 ((TC‘𝐴) ∪ {𝐴}) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
161snid 4603 . . . . 5 𝐴 ∈ {𝐴}
17 elun2 4155 . . . . 5 (𝐴 ∈ {𝐴} → 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}))
1816, 17ax-mp 5 . . . 4 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})
19 uniun 4863 . . . . . . 7 ((TC‘𝐴) ∪ {𝐴}) = ( (TC‘𝐴) ∪ {𝐴})
20 tctr 9184 . . . . . . . . 9 Tr (TC‘𝐴)
21 df-tr 5175 . . . . . . . . 9 (Tr (TC‘𝐴) ↔ (TC‘𝐴) ⊆ (TC‘𝐴))
2220, 21mpbi 232 . . . . . . . 8 (TC‘𝐴) ⊆ (TC‘𝐴)
231unisn 4860 . . . . . . . . 9 {𝐴} = 𝐴
24 tcid 9183 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
251, 24ax-mp 5 . . . . . . . . 9 𝐴 ⊆ (TC‘𝐴)
2623, 25eqsstri 4003 . . . . . . . 8 {𝐴} ⊆ (TC‘𝐴)
2722, 26unssi 4163 . . . . . . 7 ( (TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
2819, 27eqsstri 4003 . . . . . 6 ((TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
29 ssun1 4150 . . . . . 6 (TC‘𝐴) ⊆ ((TC‘𝐴) ∪ {𝐴})
3028, 29sstri 3978 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴})
31 df-tr 5175 . . . . 5 (Tr ((TC‘𝐴) ∪ {𝐴}) ↔ ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴}))
3230, 31mpbir 233 . . . 4 Tr ((TC‘𝐴) ∪ {𝐴})
33 fvex 6685 . . . . . 6 (TC‘𝐴) ∈ V
34 snex 5334 . . . . . 6 {𝐴} ∈ V
3533, 34unex 7471 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ∈ V
36 eleq2 2903 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (𝐴𝑥𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})))
37 treq 5180 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (Tr 𝑥 ↔ Tr ((TC‘𝐴) ∪ {𝐴})))
3836, 37anbi12d 632 . . . . 5 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴}))))
3935, 38elab 3669 . . . 4 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴})))
4018, 32, 39mpbir2an 709 . . 3 ((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
41 intss1 4893 . . 3 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴}))
4240, 41ax-mp 5 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴})
4315, 42eqssi 3985 1 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  {cab 2801  Vcvv 3496  cun 3936  wss 3938  {csn 4569   cuni 4840   cint 4878  Tr wtr 5174  cfv 6357  TCctc 9180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-tc 9181
This theorem is referenced by:  tcsni  9187
  Copyright terms: Public domain W3C validator