MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tc2 Structured version   Visualization version   GIF version

Theorem tc2 9779
Description: A variant of the definition of the transitive closure function, using instead the smallest transitive set containing 𝐴 as a member, gives almost the same set, except that 𝐴 itself must be added because it is not usually a member of (TC‘𝐴) (and it is never a member if 𝐴 is well-founded). (Contributed by Mario Carneiro, 23-Jun-2013.)
Hypothesis
Ref Expression
tc2.1 𝐴 ∈ V
Assertion
Ref Expression
tc2 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Distinct variable group:   𝑥,𝐴

Proof of Theorem tc2
StepHypRef Expression
1 tc2.1 . . . . 5 𝐴 ∈ V
2 tcvalg 9775 . . . . 5 (𝐴 ∈ V → (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
31, 2ax-mp 5 . . . 4 (TC‘𝐴) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
4 trss 5275 . . . . . . 7 (Tr 𝑥 → (𝐴𝑥𝐴𝑥))
54imdistanri 569 . . . . . 6 ((𝐴𝑥 ∧ Tr 𝑥) → (𝐴𝑥 ∧ Tr 𝑥))
65ss2abi 4076 . . . . 5 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
7 intss 4973 . . . . 5 ({𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
86, 7ax-mp 5 . . . 4 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
93, 8eqsstri 4029 . . 3 (TC‘𝐴) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
101elintab 4962 . . . . 5 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥))
11 simpl 482 . . . . 5 ((𝐴𝑥 ∧ Tr 𝑥) → 𝐴𝑥)
1210, 11mpgbir 1795 . . . 4 𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
131snss 4789 . . . 4 (𝐴 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)})
1412, 13mpbi 230 . . 3 {𝐴} ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
159, 14unssi 4200 . 2 ((TC‘𝐴) ∪ {𝐴}) ⊆ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
161snid 4666 . . . . 5 𝐴 ∈ {𝐴}
17 elun2 4192 . . . . 5 (𝐴 ∈ {𝐴} → 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}))
1816, 17ax-mp 5 . . . 4 𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})
19 uniun 4934 . . . . . . 7 ((TC‘𝐴) ∪ {𝐴}) = ( (TC‘𝐴) ∪ {𝐴})
20 tctr 9777 . . . . . . . . 9 Tr (TC‘𝐴)
21 df-tr 5265 . . . . . . . . 9 (Tr (TC‘𝐴) ↔ (TC‘𝐴) ⊆ (TC‘𝐴))
2220, 21mpbi 230 . . . . . . . 8 (TC‘𝐴) ⊆ (TC‘𝐴)
231unisn 4930 . . . . . . . . 9 {𝐴} = 𝐴
24 tcid 9776 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (TC‘𝐴))
251, 24ax-mp 5 . . . . . . . . 9 𝐴 ⊆ (TC‘𝐴)
2623, 25eqsstri 4029 . . . . . . . 8 {𝐴} ⊆ (TC‘𝐴)
2722, 26unssi 4200 . . . . . . 7 ( (TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
2819, 27eqsstri 4029 . . . . . 6 ((TC‘𝐴) ∪ {𝐴}) ⊆ (TC‘𝐴)
29 ssun1 4187 . . . . . 6 (TC‘𝐴) ⊆ ((TC‘𝐴) ∪ {𝐴})
3028, 29sstri 4004 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴})
31 df-tr 5265 . . . . 5 (Tr ((TC‘𝐴) ∪ {𝐴}) ↔ ((TC‘𝐴) ∪ {𝐴}) ⊆ ((TC‘𝐴) ∪ {𝐴}))
3230, 31mpbir 231 . . . 4 Tr ((TC‘𝐴) ∪ {𝐴})
33 fvex 6919 . . . . . 6 (TC‘𝐴) ∈ V
34 snex 5441 . . . . . 6 {𝐴} ∈ V
3533, 34unex 7762 . . . . 5 ((TC‘𝐴) ∪ {𝐴}) ∈ V
36 eleq2 2827 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (𝐴𝑥𝐴 ∈ ((TC‘𝐴) ∪ {𝐴})))
37 treq 5272 . . . . . 6 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → (Tr 𝑥 ↔ Tr ((TC‘𝐴) ∪ {𝐴})))
3836, 37anbi12d 632 . . . . 5 (𝑥 = ((TC‘𝐴) ∪ {𝐴}) → ((𝐴𝑥 ∧ Tr 𝑥) ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴}))))
3935, 38elab 3680 . . . 4 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ↔ (𝐴 ∈ ((TC‘𝐴) ∪ {𝐴}) ∧ Tr ((TC‘𝐴) ∪ {𝐴})))
4018, 32, 39mpbir2an 711 . . 3 ((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
41 intss1 4967 . . 3 (((TC‘𝐴) ∪ {𝐴}) ∈ {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} → {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴}))
4240, 41ax-mp 5 . 2 {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)} ⊆ ((TC‘𝐴) ∪ {𝐴})
4315, 42eqssi 4011 1 ((TC‘𝐴) ∪ {𝐴}) = {𝑥 ∣ (𝐴𝑥 ∧ Tr 𝑥)}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  wcel 2105  {cab 2711  Vcvv 3477  cun 3960  wss 3962  {csn 4630   cuni 4911   cint 4950  Tr wtr 5264  cfv 6562  TCctc 9773
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pr 5437  ax-un 7753  ax-inf2 9678
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-ov 7433  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-tc 9774
This theorem is referenced by:  tcsni  9780
  Copyright terms: Public domain W3C validator