| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr2 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5237 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dftr2 | ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3948 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 2 | df-tr 5235 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 19.23v 1942 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | |
| 4 | eluni 4891 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3931 ∪ cuni 4888 Tr wtr 5234 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-ss 3948 df-uni 4889 df-tr 5235 |
| This theorem is referenced by: dftr2c 5237 dftr5OLD 5239 trel 5243 ordelord 6379 suctr 6445 trom 7875 hartogs 9563 card2on 9573 trcl 9747 tskwe 9969 ondomon 10582 nosupno 27672 noinfno 27687 bdayon 28230 dftr6 35773 elpotr 35804 hftr 36205 dford4 43020 mnutrd 44271 tratrb 44528 trsbc 44532 truniALT 44533 sspwtr 44812 sspwtrALT 44813 sspwtrALT2 44814 pwtrVD 44815 pwtrrVD 44816 suctrALT 44817 suctrALT2VD 44827 suctrALT2 44828 tratrbVD 44852 trsbcVD 44868 truniALTVD 44869 trintALTVD 44871 trintALT 44872 suctrALTcf 44913 suctrALTcfVD 44914 suctrALT3 44915 |
| Copyright terms: Public domain | W3C validator |