MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2 Structured version   Visualization version   GIF version

Theorem dftr2 5216
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5217 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dftr2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr2
StepHypRef Expression
1 df-ss 3931 . 2 ( 𝐴𝐴 ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
2 df-tr 5215 . 2 (Tr 𝐴 𝐴𝐴)
3 19.23v 1942 . . . 4 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
4 eluni 4874 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
54imbi1i 349 . . . 4 ((𝑥 𝐴𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
63, 5bitr4i 278 . . 3 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (𝑥 𝐴𝑥𝐴))
76albii 1819 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
81, 2, 73bitr4i 303 1 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wss 3914   cuni 4871  Tr wtr 5214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-ss 3931  df-uni 4872  df-tr 5215
This theorem is referenced by:  dftr2c  5217  dftr5OLD  5219  trel  5223  ordelord  6354  suctr  6420  trom  7851  hartogs  9497  card2on  9507  trcl  9681  tskwe  9903  ondomon  10516  nosupno  27615  noinfno  27630  bdayon  28173  dftr6  35738  elpotr  35769  hftr  36170  dford4  43018  mnutrd  44269  tratrb  44526  trsbc  44530  truniALT  44531  sspwtr  44810  sspwtrALT  44811  sspwtrALT2  44812  pwtrVD  44813  pwtrrVD  44814  suctrALT  44815  suctrALT2VD  44825  suctrALT2  44826  tratrbVD  44850  trsbcVD  44866  truniALTVD  44867  trintALTVD  44869  trintALT  44870  suctrALTcf  44911  suctrALTcfVD  44912  suctrALT3  44913
  Copyright terms: Public domain W3C validator