MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2 Structured version   Visualization version   GIF version

Theorem dftr2 5202
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5203 instead may avoid dependences on ax-11 2162. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dftr2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr2
StepHypRef Expression
1 df-ss 3915 . 2 ( 𝐴𝐴 ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
2 df-tr 5201 . 2 (Tr 𝐴 𝐴𝐴)
3 19.23v 1943 . . . 4 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
4 eluni 4861 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
54imbi1i 349 . . . 4 ((𝑥 𝐴𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
63, 5bitr4i 278 . . 3 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (𝑥 𝐴𝑥𝐴))
76albii 1820 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
81, 2, 73bitr4i 303 1 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wex 1780  wcel 2113  wss 3898   cuni 4858  Tr wtr 5200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-v 3439  df-ss 3915  df-uni 4859  df-tr 5201
This theorem is referenced by:  dftr2c  5203  trel  5208  ordelord  6333  suctr  6399  trom  7811  hartogs  9437  card2on  9447  trcl  9625  tskwe  9850  ondomon  10461  nosupno  27643  noinfno  27658  bdayon  28210  dftr6  35816  elpotr  35844  hftr  36247  dford4  43146  mnutrd  44397  tratrb  44653  trsbc  44657  truniALT  44658  sspwtr  44937  sspwtrALT  44938  sspwtrALT2  44939  pwtrVD  44940  pwtrrVD  44941  suctrALT  44942  suctrALT2VD  44952  suctrALT2  44953  tratrbVD  44977  trsbcVD  44993  truniALTVD  44994  trintALTVD  44996  trintALT  44997  suctrALTcf  45038  suctrALTcfVD  45039  suctrALT3  45040
  Copyright terms: Public domain W3C validator