MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2 Structured version   Visualization version   GIF version

Theorem dftr2 5219
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5220 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dftr2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr2
StepHypRef Expression
1 df-ss 3934 . 2 ( 𝐴𝐴 ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
2 df-tr 5218 . 2 (Tr 𝐴 𝐴𝐴)
3 19.23v 1942 . . . 4 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
4 eluni 4877 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
54imbi1i 349 . . . 4 ((𝑥 𝐴𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
63, 5bitr4i 278 . . 3 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (𝑥 𝐴𝑥𝐴))
76albii 1819 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
81, 2, 73bitr4i 303 1 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wss 3917   cuni 4874  Tr wtr 5217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-ss 3934  df-uni 4875  df-tr 5218
This theorem is referenced by:  dftr2c  5220  dftr5OLD  5222  trel  5226  ordelord  6357  suctr  6423  trom  7854  hartogs  9504  card2on  9514  trcl  9688  tskwe  9910  ondomon  10523  nosupno  27622  noinfno  27637  bdayon  28180  dftr6  35745  elpotr  35776  hftr  36177  dford4  43025  mnutrd  44276  tratrb  44533  trsbc  44537  truniALT  44538  sspwtr  44817  sspwtrALT  44818  sspwtrALT2  44819  pwtrVD  44820  pwtrrVD  44821  suctrALT  44822  suctrALT2VD  44832  suctrALT2  44833  tratrbVD  44857  trsbcVD  44873  truniALTVD  44874  trintALTVD  44876  trintALT  44877  suctrALTcf  44918  suctrALTcfVD  44919  suctrALT3  44920
  Copyright terms: Public domain W3C validator