MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr2 Structured version   Visualization version   GIF version

Theorem dftr2 5236
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5237 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.)
Assertion
Ref Expression
dftr2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr2
StepHypRef Expression
1 df-ss 3948 . 2 ( 𝐴𝐴 ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
2 df-tr 5235 . 2 (Tr 𝐴 𝐴𝐴)
3 19.23v 1942 . . . 4 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
4 eluni 4891 . . . . 5 (𝑥 𝐴 ↔ ∃𝑦(𝑥𝑦𝑦𝐴))
54imbi1i 349 . . . 4 ((𝑥 𝐴𝑥𝐴) ↔ (∃𝑦(𝑥𝑦𝑦𝐴) → 𝑥𝐴))
63, 5bitr4i 278 . . 3 (∀𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ (𝑥 𝐴𝑥𝐴))
76albii 1819 . 2 (∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴) ↔ ∀𝑥(𝑥 𝐴𝑥𝐴))
81, 2, 73bitr4i 303 1 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑥𝑦𝑦𝐴) → 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wex 1779  wcel 2109  wss 3931   cuni 4888  Tr wtr 5234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-v 3466  df-ss 3948  df-uni 4889  df-tr 5235
This theorem is referenced by:  dftr2c  5237  dftr5OLD  5239  trel  5243  ordelord  6379  suctr  6445  trom  7875  hartogs  9563  card2on  9573  trcl  9747  tskwe  9969  ondomon  10582  nosupno  27672  noinfno  27687  bdayon  28230  dftr6  35773  elpotr  35804  hftr  36205  dford4  43020  mnutrd  44271  tratrb  44528  trsbc  44532  truniALT  44533  sspwtr  44812  sspwtrALT  44813  sspwtrALT2  44814  pwtrVD  44815  pwtrrVD  44816  suctrALT  44817  suctrALT2VD  44827  suctrALT2  44828  tratrbVD  44852  trsbcVD  44868  truniALTVD  44869  trintALTVD  44871  trintALT  44872  suctrALTcf  44913  suctrALTcfVD  44914  suctrALT3  44915
  Copyright terms: Public domain W3C validator