| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr2 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5220 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dftr2 | ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3934 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 2 | df-tr 5218 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 19.23v 1942 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | |
| 4 | eluni 4877 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3917 ∪ cuni 4874 Tr wtr 5217 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-uni 4875 df-tr 5218 |
| This theorem is referenced by: dftr2c 5220 dftr5OLD 5222 trel 5226 ordelord 6357 suctr 6423 trom 7854 hartogs 9504 card2on 9514 trcl 9688 tskwe 9910 ondomon 10523 nosupno 27622 noinfno 27637 bdayon 28180 dftr6 35745 elpotr 35776 hftr 36177 dford4 43025 mnutrd 44276 tratrb 44533 trsbc 44537 truniALT 44538 sspwtr 44817 sspwtrALT 44818 sspwtrALT2 44819 pwtrVD 44820 pwtrrVD 44821 suctrALT 44822 suctrALT2VD 44832 suctrALT2 44833 tratrbVD 44857 trsbcVD 44873 truniALTVD 44874 trintALTVD 44876 trintALT 44877 suctrALTcf 44918 suctrALTcfVD 44919 suctrALT3 44920 |
| Copyright terms: Public domain | W3C validator |