| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr2 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5205 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dftr2 | ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3922 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 2 | df-tr 5203 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 19.23v 1942 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | |
| 4 | eluni 4864 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3905 ∪ cuni 4861 Tr wtr 5202 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-ss 3922 df-uni 4862 df-tr 5203 |
| This theorem is referenced by: dftr2c 5205 trel 5210 ordelord 6333 suctr 6399 trom 7815 hartogs 9455 card2on 9465 trcl 9643 tskwe 9865 ondomon 10476 nosupno 27631 noinfno 27646 bdayon 28196 dftr6 35723 elpotr 35754 hftr 36155 dford4 43002 mnutrd 44253 tratrb 44510 trsbc 44514 truniALT 44515 sspwtr 44794 sspwtrALT 44795 sspwtrALT2 44796 pwtrVD 44797 pwtrrVD 44798 suctrALT 44799 suctrALT2VD 44809 suctrALT2 44810 tratrbVD 44834 trsbcVD 44850 truniALTVD 44851 trintALTVD 44853 trintALT 44854 suctrALTcf 44895 suctrALTcfVD 44896 suctrALT3 44897 |
| Copyright terms: Public domain | W3C validator |