| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr2 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. Using dftr2c 5217 instead may avoid dependences on ax-11 2158. (Contributed by NM, 24-Apr-1994.) |
| Ref | Expression |
|---|---|
| dftr2 | ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ss 3931 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) | |
| 2 | df-tr 5215 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 3 | 19.23v 1942 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | |
| 4 | eluni 4874 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
| 5 | 4 | imbi1i 349 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| 6 | 3, 5 | bitr4i 278 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 7 | 6 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
| 8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 ∈ wcel 2109 ⊆ wss 3914 ∪ cuni 4871 Tr wtr 5214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-uni 4872 df-tr 5215 |
| This theorem is referenced by: dftr2c 5217 dftr5OLD 5219 trel 5223 ordelord 6354 suctr 6420 trom 7851 hartogs 9497 card2on 9507 trcl 9681 tskwe 9903 ondomon 10516 nosupno 27615 noinfno 27630 bdayon 28173 dftr6 35738 elpotr 35769 hftr 36170 dford4 43018 mnutrd 44269 tratrb 44526 trsbc 44530 truniALT 44531 sspwtr 44810 sspwtrALT 44811 sspwtrALT2 44812 pwtrVD 44813 pwtrrVD 44814 suctrALT 44815 suctrALT2VD 44825 suctrALT2 44826 tratrbVD 44850 trsbcVD 44866 truniALTVD 44867 trintALTVD 44869 trintALT 44870 suctrALTcf 44911 suctrALTcfVD 44912 suctrALT3 44913 |
| Copyright terms: Public domain | W3C validator |