Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dftr2 | Structured version Visualization version GIF version |
Description: An alternate way of defining a transitive class. Exercise 7 of [TakeutiZaring] p. 40. (Contributed by NM, 24-Apr-1994.) |
Ref | Expression |
---|---|
dftr2 | ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss2 3907 | . 2 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) | |
2 | df-tr 5192 | . 2 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
3 | 19.23v 1945 | . . . 4 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) | |
4 | eluni 4842 | . . . . 5 ⊢ (𝑥 ∈ ∪ 𝐴 ↔ ∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴)) | |
5 | 4 | imbi1i 350 | . . . 4 ⊢ ((𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴) ↔ (∃𝑦(𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
6 | 3, 5 | bitr4i 277 | . . 3 ⊢ (∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
7 | 6 | albii 1822 | . 2 ⊢ (∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ ∪ 𝐴 → 𝑥 ∈ 𝐴)) |
8 | 1, 2, 7 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝑦 ∧ 𝑦 ∈ 𝐴) → 𝑥 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 ∈ wcel 2106 ⊆ wss 3887 ∪ cuni 4839 Tr wtr 5191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-uni 4840 df-tr 5192 |
This theorem is referenced by: dftr5 5194 trel 5198 ordelord 6288 suctr 6349 trom 7721 hartogs 9303 card2on 9313 trcl 9486 tskwe 9708 ondomon 10319 dftr6 33718 elpotr 33757 nosupno 33906 noinfno 33921 hftr 34484 dford4 40851 mnutrd 41898 tratrb 42156 trsbc 42160 truniALT 42161 sspwtr 42441 sspwtrALT 42442 sspwtrALT2 42443 pwtrVD 42444 pwtrrVD 42445 suctrALT 42446 suctrALT2VD 42456 suctrALT2 42457 tratrbVD 42481 trsbcVD 42497 truniALTVD 42498 trintALTVD 42500 trintALT 42501 suctrALTcf 42542 suctrALTcfVD 42543 suctrALT3 42544 |
Copyright terms: Public domain | W3C validator |