MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trcl Structured version   Visualization version   GIF version

Theorem trcl 9613
Description: For any set 𝐴, show the properties of its transitive closure 𝐶. Similar to Theorem 9.1 of [TakeutiZaring] p. 73 except that we show an explicit expression for the transitive closure rather than just its existence. See tz9.1 9614 for an abbreviated version showing existence. (Contributed by NM, 14-Sep-2003.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
trcl.1 𝐴 ∈ V
trcl.2 𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
trcl.3 𝐶 = 𝑦 ∈ ω (𝐹𝑦)
Assertion
Ref Expression
trcl (𝐴𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥))
Distinct variable groups:   𝑥,𝑧   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦
Allowed substitution hints:   𝐴(𝑧)   𝐶(𝑥,𝑦,𝑧)   𝐹(𝑧)

Proof of Theorem trcl
Dummy variables 𝑣 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 peano1 7814 . . . . 5 ∅ ∈ ω
2 trcl.2 . . . . . . . 8 𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)
32fveq1i 6818 . . . . . . 7 (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘∅)
4 trcl.1 . . . . . . . 8 𝐴 ∈ V
5 fr0g 8350 . . . . . . . 8 (𝐴 ∈ V → ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘∅) = 𝐴)
64, 5ax-mp 5 . . . . . . 7 ((rec((𝑧 ∈ V ↦ (𝑧 𝑧)), 𝐴) ↾ ω)‘∅) = 𝐴
73, 6eqtr2i 2755 . . . . . 6 𝐴 = (𝐹‘∅)
87eqimssi 3990 . . . . 5 𝐴 ⊆ (𝐹‘∅)
9 fveq2 6817 . . . . . . 7 (𝑦 = ∅ → (𝐹𝑦) = (𝐹‘∅))
109sseq2d 3962 . . . . . 6 (𝑦 = ∅ → (𝐴 ⊆ (𝐹𝑦) ↔ 𝐴 ⊆ (𝐹‘∅)))
1110rspcev 3572 . . . . 5 ((∅ ∈ ω ∧ 𝐴 ⊆ (𝐹‘∅)) → ∃𝑦 ∈ ω 𝐴 ⊆ (𝐹𝑦))
121, 8, 11mp2an 692 . . . 4 𝑦 ∈ ω 𝐴 ⊆ (𝐹𝑦)
13 ssiun 4990 . . . 4 (∃𝑦 ∈ ω 𝐴 ⊆ (𝐹𝑦) → 𝐴 𝑦 ∈ ω (𝐹𝑦))
1412, 13ax-mp 5 . . 3 𝐴 𝑦 ∈ ω (𝐹𝑦)
15 trcl.3 . . 3 𝐶 = 𝑦 ∈ ω (𝐹𝑦)
1614, 15sseqtrri 3979 . 2 𝐴𝐶
17 dftr2 5195 . . . 4 (Tr 𝑦 ∈ ω (𝐹𝑦) ↔ ∀𝑣𝑢((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → 𝑣 𝑦 ∈ ω (𝐹𝑦)))
18 eliun 4940 . . . . . . . . 9 (𝑢 𝑦 ∈ ω (𝐹𝑦) ↔ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹𝑦))
1918anbi2i 623 . . . . . . . 8 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) ↔ (𝑣𝑢 ∧ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹𝑦)))
20 r19.42v 3164 . . . . . . . 8 (∃𝑦 ∈ ω (𝑣𝑢𝑢 ∈ (𝐹𝑦)) ↔ (𝑣𝑢 ∧ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹𝑦)))
2119, 20bitr4i 278 . . . . . . 7 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) ↔ ∃𝑦 ∈ ω (𝑣𝑢𝑢 ∈ (𝐹𝑦)))
22 elunii 4859 . . . . . . . . 9 ((𝑣𝑢𝑢 ∈ (𝐹𝑦)) → 𝑣 (𝐹𝑦))
23 ssun2 4124 . . . . . . . . . . 11 (𝐹𝑦) ⊆ ((𝐹𝑦) ∪ (𝐹𝑦))
24 fvex 6830 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
2524uniex 7669 . . . . . . . . . . . . 13 (𝐹𝑦) ∈ V
2624, 25unex 7672 . . . . . . . . . . . 12 ((𝐹𝑦) ∪ (𝐹𝑦)) ∈ V
27 id 22 . . . . . . . . . . . . . 14 (𝑥 = 𝑧𝑥 = 𝑧)
28 unieq 4865 . . . . . . . . . . . . . 14 (𝑥 = 𝑧 𝑥 = 𝑧)
2927, 28uneq12d 4114 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 𝑥) = (𝑧 𝑧))
30 id 22 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → 𝑥 = (𝐹𝑦))
31 unieq 4865 . . . . . . . . . . . . . 14 (𝑥 = (𝐹𝑦) → 𝑥 = (𝐹𝑦))
3230, 31uneq12d 4114 . . . . . . . . . . . . 13 (𝑥 = (𝐹𝑦) → (𝑥 𝑥) = ((𝐹𝑦) ∪ (𝐹𝑦)))
332, 29, 32frsucmpt2 8354 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ ((𝐹𝑦) ∪ (𝐹𝑦)) ∈ V) → (𝐹‘suc 𝑦) = ((𝐹𝑦) ∪ (𝐹𝑦)))
3426, 33mpan2 691 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝐹𝑦) ∪ (𝐹𝑦)))
3523, 34sseqtrrid 3973 . . . . . . . . . 10 (𝑦 ∈ ω → (𝐹𝑦) ⊆ (𝐹‘suc 𝑦))
3635sseld 3928 . . . . . . . . 9 (𝑦 ∈ ω → (𝑣 (𝐹𝑦) → 𝑣 ∈ (𝐹‘suc 𝑦)))
3722, 36syl5 34 . . . . . . . 8 (𝑦 ∈ ω → ((𝑣𝑢𝑢 ∈ (𝐹𝑦)) → 𝑣 ∈ (𝐹‘suc 𝑦)))
3837reximia 3067 . . . . . . 7 (∃𝑦 ∈ ω (𝑣𝑢𝑢 ∈ (𝐹𝑦)) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦))
3921, 38sylbi 217 . . . . . 6 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦))
40 peano2 7815 . . . . . . . . . 10 (𝑦 ∈ ω → suc 𝑦 ∈ ω)
41 fveq2 6817 . . . . . . . . . . . . 13 (𝑢 = suc 𝑦 → (𝐹𝑢) = (𝐹‘suc 𝑦))
4241eleq2d 2817 . . . . . . . . . . . 12 (𝑢 = suc 𝑦 → (𝑣 ∈ (𝐹𝑢) ↔ 𝑣 ∈ (𝐹‘suc 𝑦)))
4342rspcev 3572 . . . . . . . . . . 11 ((suc 𝑦 ∈ ω ∧ 𝑣 ∈ (𝐹‘suc 𝑦)) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢))
4443ex 412 . . . . . . . . . 10 (suc 𝑦 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢)))
4540, 44syl 17 . . . . . . . . 9 (𝑦 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢)))
4645rexlimiv 3126 . . . . . . . 8 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢))
47 fveq2 6817 . . . . . . . . . 10 (𝑦 = 𝑢 → (𝐹𝑦) = (𝐹𝑢))
4847eleq2d 2817 . . . . . . . . 9 (𝑦 = 𝑢 → (𝑣 ∈ (𝐹𝑦) ↔ 𝑣 ∈ (𝐹𝑢)))
4948cbvrexvw 3211 . . . . . . . 8 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹𝑦) ↔ ∃𝑢 ∈ ω 𝑣 ∈ (𝐹𝑢))
5046, 49sylibr 234 . . . . . . 7 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹𝑦))
51 eliun 4940 . . . . . . 7 (𝑣 𝑦 ∈ ω (𝐹𝑦) ↔ ∃𝑦 ∈ ω 𝑣 ∈ (𝐹𝑦))
5250, 51sylibr 234 . . . . . 6 (∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦) → 𝑣 𝑦 ∈ ω (𝐹𝑦))
5339, 52syl 17 . . . . 5 ((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → 𝑣 𝑦 ∈ ω (𝐹𝑦))
5453ax-gen 1796 . . . 4 𝑢((𝑣𝑢𝑢 𝑦 ∈ ω (𝐹𝑦)) → 𝑣 𝑦 ∈ ω (𝐹𝑦))
5517, 54mpgbir 1800 . . 3 Tr 𝑦 ∈ ω (𝐹𝑦)
56 treq 5200 . . . 4 (𝐶 = 𝑦 ∈ ω (𝐹𝑦) → (Tr 𝐶 ↔ Tr 𝑦 ∈ ω (𝐹𝑦)))
5715, 56ax-mp 5 . . 3 (Tr 𝐶 ↔ Tr 𝑦 ∈ ω (𝐹𝑦))
5855, 57mpbir 231 . 2 Tr 𝐶
59 fveq2 6817 . . . . . . . 8 (𝑣 = ∅ → (𝐹𝑣) = (𝐹‘∅))
6059sseq1d 3961 . . . . . . 7 (𝑣 = ∅ → ((𝐹𝑣) ⊆ 𝑥 ↔ (𝐹‘∅) ⊆ 𝑥))
61 fveq2 6817 . . . . . . . 8 (𝑣 = 𝑦 → (𝐹𝑣) = (𝐹𝑦))
6261sseq1d 3961 . . . . . . 7 (𝑣 = 𝑦 → ((𝐹𝑣) ⊆ 𝑥 ↔ (𝐹𝑦) ⊆ 𝑥))
63 fveq2 6817 . . . . . . . 8 (𝑣 = suc 𝑦 → (𝐹𝑣) = (𝐹‘suc 𝑦))
6463sseq1d 3961 . . . . . . 7 (𝑣 = suc 𝑦 → ((𝐹𝑣) ⊆ 𝑥 ↔ (𝐹‘suc 𝑦) ⊆ 𝑥))
653, 6eqtri 2754 . . . . . . . . . 10 (𝐹‘∅) = 𝐴
6665sseq1i 3958 . . . . . . . . 9 ((𝐹‘∅) ⊆ 𝑥𝐴𝑥)
6766biimpri 228 . . . . . . . 8 (𝐴𝑥 → (𝐹‘∅) ⊆ 𝑥)
6867adantr 480 . . . . . . 7 ((𝐴𝑥 ∧ Tr 𝑥) → (𝐹‘∅) ⊆ 𝑥)
69 uniss 4862 . . . . . . . . . . . . 13 ((𝐹𝑦) ⊆ 𝑥 (𝐹𝑦) ⊆ 𝑥)
70 df-tr 5194 . . . . . . . . . . . . . 14 (Tr 𝑥 𝑥𝑥)
71 sstr2 3936 . . . . . . . . . . . . . 14 ( (𝐹𝑦) ⊆ 𝑥 → ( 𝑥𝑥 (𝐹𝑦) ⊆ 𝑥))
7270, 71biimtrid 242 . . . . . . . . . . . . 13 ( (𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 (𝐹𝑦) ⊆ 𝑥))
7369, 72syl 17 . . . . . . . . . . . 12 ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 (𝐹𝑦) ⊆ 𝑥))
7473anc2li 555 . . . . . . . . . . 11 ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 → ((𝐹𝑦) ⊆ 𝑥 (𝐹𝑦) ⊆ 𝑥)))
75 unss 4135 . . . . . . . . . . 11 (((𝐹𝑦) ⊆ 𝑥 (𝐹𝑦) ⊆ 𝑥) ↔ ((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥)
7674, 75imbitrdi 251 . . . . . . . . . 10 ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 → ((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥))
7734sseq1d 3961 . . . . . . . . . . 11 (𝑦 ∈ ω → ((𝐹‘suc 𝑦) ⊆ 𝑥 ↔ ((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥))
7877biimprd 248 . . . . . . . . . 10 (𝑦 ∈ ω → (((𝐹𝑦) ∪ (𝐹𝑦)) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥))
7976, 78syl9r 78 . . . . . . . . 9 (𝑦 ∈ ω → ((𝐹𝑦) ⊆ 𝑥 → (Tr 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)))
8079com23 86 . . . . . . . 8 (𝑦 ∈ ω → (Tr 𝑥 → ((𝐹𝑦) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)))
8180adantld 490 . . . . . . 7 (𝑦 ∈ ω → ((𝐴𝑥 ∧ Tr 𝑥) → ((𝐹𝑦) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)))
8260, 62, 64, 68, 81finds2 7823 . . . . . 6 (𝑣 ∈ ω → ((𝐴𝑥 ∧ Tr 𝑥) → (𝐹𝑣) ⊆ 𝑥))
8382com12 32 . . . . 5 ((𝐴𝑥 ∧ Tr 𝑥) → (𝑣 ∈ ω → (𝐹𝑣) ⊆ 𝑥))
8483ralrimiv 3123 . . . 4 ((𝐴𝑥 ∧ Tr 𝑥) → ∀𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
85 fveq2 6817 . . . . . . . 8 (𝑦 = 𝑣 → (𝐹𝑦) = (𝐹𝑣))
8685cbviunv 4984 . . . . . . 7 𝑦 ∈ ω (𝐹𝑦) = 𝑣 ∈ ω (𝐹𝑣)
8715, 86eqtri 2754 . . . . . 6 𝐶 = 𝑣 ∈ ω (𝐹𝑣)
8887sseq1i 3958 . . . . 5 (𝐶𝑥 𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
89 iunss 4989 . . . . 5 ( 𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥 ↔ ∀𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
9088, 89bitri 275 . . . 4 (𝐶𝑥 ↔ ∀𝑣 ∈ ω (𝐹𝑣) ⊆ 𝑥)
9184, 90sylibr 234 . . 3 ((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥)
9291ax-gen 1796 . 2 𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥)
9316, 58, 923pm3.2i 1340 1 (𝐴𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴𝑥 ∧ Tr 𝑥) → 𝐶𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cun 3895  wss 3897  c0 4278   cuni 4854   ciun 4936  cmpt 5167  Tr wtr 5193  cres 5613  suc csuc 6303  cfv 6476  ωcom 7791  reccrdg 8323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7344  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324
This theorem is referenced by:  tz9.1  9614  tz9.1c  9615
  Copyright terms: Public domain W3C validator