Step | Hyp | Ref
| Expression |
1 | | peano1 7710 |
. . . . 5
⊢ ∅
∈ ω |
2 | | trcl.2 |
. . . . . . . 8
⊢ 𝐹 = (rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)), 𝐴) ↾ ω) |
3 | 2 | fveq1i 6757 |
. . . . . . 7
⊢ (𝐹‘∅) = ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)),
𝐴) ↾
ω)‘∅) |
4 | | trcl.1 |
. . . . . . . 8
⊢ 𝐴 ∈ V |
5 | | fr0g 8237 |
. . . . . . . 8
⊢ (𝐴 ∈ V → ((rec((𝑧 ∈ V ↦ (𝑧 ∪ ∪ 𝑧)),
𝐴) ↾
ω)‘∅) = 𝐴) |
6 | 4, 5 | ax-mp 5 |
. . . . . . 7
⊢
((rec((𝑧 ∈ V
↦ (𝑧 ∪ ∪ 𝑧)),
𝐴) ↾
ω)‘∅) = 𝐴 |
7 | 3, 6 | eqtr2i 2767 |
. . . . . 6
⊢ 𝐴 = (𝐹‘∅) |
8 | 7 | eqimssi 3975 |
. . . . 5
⊢ 𝐴 ⊆ (𝐹‘∅) |
9 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = ∅ → (𝐹‘𝑦) = (𝐹‘∅)) |
10 | 9 | sseq2d 3949 |
. . . . . 6
⊢ (𝑦 = ∅ → (𝐴 ⊆ (𝐹‘𝑦) ↔ 𝐴 ⊆ (𝐹‘∅))) |
11 | 10 | rspcev 3552 |
. . . . 5
⊢ ((∅
∈ ω ∧ 𝐴
⊆ (𝐹‘∅))
→ ∃𝑦 ∈
ω 𝐴 ⊆ (𝐹‘𝑦)) |
12 | 1, 8, 11 | mp2an 688 |
. . . 4
⊢
∃𝑦 ∈
ω 𝐴 ⊆ (𝐹‘𝑦) |
13 | | ssiun 4972 |
. . . 4
⊢
(∃𝑦 ∈
ω 𝐴 ⊆ (𝐹‘𝑦) → 𝐴 ⊆ ∪
𝑦 ∈ ω (𝐹‘𝑦)) |
14 | 12, 13 | ax-mp 5 |
. . 3
⊢ 𝐴 ⊆ ∪ 𝑦 ∈ ω (𝐹‘𝑦) |
15 | | trcl.3 |
. . 3
⊢ 𝐶 = ∪ 𝑦 ∈ ω (𝐹‘𝑦) |
16 | 14, 15 | sseqtrri 3954 |
. 2
⊢ 𝐴 ⊆ 𝐶 |
17 | | dftr2 5189 |
. . . 4
⊢ (Tr
∪ 𝑦 ∈ ω (𝐹‘𝑦) ↔ ∀𝑣∀𝑢((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) → 𝑣 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦))) |
18 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑢 ∈ ∪ 𝑦 ∈ ω (𝐹‘𝑦) ↔ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹‘𝑦)) |
19 | 18 | anbi2i 622 |
. . . . . . . 8
⊢ ((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) ↔ (𝑣 ∈ 𝑢 ∧ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹‘𝑦))) |
20 | | r19.42v 3276 |
. . . . . . . 8
⊢
(∃𝑦 ∈
ω (𝑣 ∈ 𝑢 ∧ 𝑢 ∈ (𝐹‘𝑦)) ↔ (𝑣 ∈ 𝑢 ∧ ∃𝑦 ∈ ω 𝑢 ∈ (𝐹‘𝑦))) |
21 | 19, 20 | bitr4i 277 |
. . . . . . 7
⊢ ((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) ↔ ∃𝑦 ∈ ω (𝑣 ∈ 𝑢 ∧ 𝑢 ∈ (𝐹‘𝑦))) |
22 | | elunii 4841 |
. . . . . . . . 9
⊢ ((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ (𝐹‘𝑦)) → 𝑣 ∈ ∪ (𝐹‘𝑦)) |
23 | | ssun2 4103 |
. . . . . . . . . . 11
⊢ ∪ (𝐹‘𝑦) ⊆ ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) |
24 | | fvex 6769 |
. . . . . . . . . . . . 13
⊢ (𝐹‘𝑦) ∈ V |
25 | 24 | uniex 7572 |
. . . . . . . . . . . . 13
⊢ ∪ (𝐹‘𝑦) ∈ V |
26 | 24, 25 | unex 7574 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) ∈ V |
27 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → 𝑥 = 𝑧) |
28 | | unieq 4847 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑧 → ∪ 𝑥 = ∪
𝑧) |
29 | 27, 28 | uneq12d 4094 |
. . . . . . . . . . . . 13
⊢ (𝑥 = 𝑧 → (𝑥 ∪ ∪ 𝑥) = (𝑧 ∪ ∪ 𝑧)) |
30 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐹‘𝑦) → 𝑥 = (𝐹‘𝑦)) |
31 | | unieq 4847 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = (𝐹‘𝑦) → ∪ 𝑥 = ∪
(𝐹‘𝑦)) |
32 | 30, 31 | uneq12d 4094 |
. . . . . . . . . . . . 13
⊢ (𝑥 = (𝐹‘𝑦) → (𝑥 ∪ ∪ 𝑥) = ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦))) |
33 | 2, 29, 32 | frsucmpt2 8241 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) ∈ V) → (𝐹‘suc 𝑦) = ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦))) |
34 | 26, 33 | mpan2 687 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → (𝐹‘suc 𝑦) = ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦))) |
35 | 23, 34 | sseqtrrid 3970 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → ∪ (𝐹‘𝑦) ⊆ (𝐹‘suc 𝑦)) |
36 | 35 | sseld 3916 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝑣 ∈ ∪ (𝐹‘𝑦) → 𝑣 ∈ (𝐹‘suc 𝑦))) |
37 | 22, 36 | syl5 34 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → ((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ (𝐹‘𝑦)) → 𝑣 ∈ (𝐹‘suc 𝑦))) |
38 | 37 | reximia 3172 |
. . . . . . 7
⊢
(∃𝑦 ∈
ω (𝑣 ∈ 𝑢 ∧ 𝑢 ∈ (𝐹‘𝑦)) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦)) |
39 | 21, 38 | sylbi 216 |
. . . . . 6
⊢ ((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘suc 𝑦)) |
40 | | peano2 7711 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → suc 𝑦 ∈
ω) |
41 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑢 = suc 𝑦 → (𝐹‘𝑢) = (𝐹‘suc 𝑦)) |
42 | 41 | eleq2d 2824 |
. . . . . . . . . . . 12
⊢ (𝑢 = suc 𝑦 → (𝑣 ∈ (𝐹‘𝑢) ↔ 𝑣 ∈ (𝐹‘suc 𝑦))) |
43 | 42 | rspcev 3552 |
. . . . . . . . . . 11
⊢ ((suc
𝑦 ∈ ω ∧
𝑣 ∈ (𝐹‘suc 𝑦)) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹‘𝑢)) |
44 | 43 | ex 412 |
. . . . . . . . . 10
⊢ (suc
𝑦 ∈ ω →
(𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹‘𝑢))) |
45 | 40, 44 | syl 17 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → (𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹‘𝑢))) |
46 | 45 | rexlimiv 3208 |
. . . . . . . 8
⊢
(∃𝑦 ∈
ω 𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑢 ∈ ω 𝑣 ∈ (𝐹‘𝑢)) |
47 | | fveq2 6756 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑢 → (𝐹‘𝑦) = (𝐹‘𝑢)) |
48 | 47 | eleq2d 2824 |
. . . . . . . . 9
⊢ (𝑦 = 𝑢 → (𝑣 ∈ (𝐹‘𝑦) ↔ 𝑣 ∈ (𝐹‘𝑢))) |
49 | 48 | cbvrexvw 3373 |
. . . . . . . 8
⊢
(∃𝑦 ∈
ω 𝑣 ∈ (𝐹‘𝑦) ↔ ∃𝑢 ∈ ω 𝑣 ∈ (𝐹‘𝑢)) |
50 | 46, 49 | sylibr 233 |
. . . . . . 7
⊢
(∃𝑦 ∈
ω 𝑣 ∈ (𝐹‘suc 𝑦) → ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘𝑦)) |
51 | | eliun 4925 |
. . . . . . 7
⊢ (𝑣 ∈ ∪ 𝑦 ∈ ω (𝐹‘𝑦) ↔ ∃𝑦 ∈ ω 𝑣 ∈ (𝐹‘𝑦)) |
52 | 50, 51 | sylibr 233 |
. . . . . 6
⊢
(∃𝑦 ∈
ω 𝑣 ∈ (𝐹‘suc 𝑦) → 𝑣 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) |
53 | 39, 52 | syl 17 |
. . . . 5
⊢ ((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) → 𝑣 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) |
54 | 53 | ax-gen 1799 |
. . . 4
⊢
∀𝑢((𝑣 ∈ 𝑢 ∧ 𝑢 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) → 𝑣 ∈ ∪
𝑦 ∈ ω (𝐹‘𝑦)) |
55 | 17, 54 | mpgbir 1803 |
. . 3
⊢ Tr
∪ 𝑦 ∈ ω (𝐹‘𝑦) |
56 | | treq 5193 |
. . . 4
⊢ (𝐶 = ∪ 𝑦 ∈ ω (𝐹‘𝑦) → (Tr 𝐶 ↔ Tr ∪ 𝑦 ∈ ω (𝐹‘𝑦))) |
57 | 15, 56 | ax-mp 5 |
. . 3
⊢ (Tr 𝐶 ↔ Tr ∪ 𝑦 ∈ ω (𝐹‘𝑦)) |
58 | 55, 57 | mpbir 230 |
. 2
⊢ Tr 𝐶 |
59 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑣 = ∅ → (𝐹‘𝑣) = (𝐹‘∅)) |
60 | 59 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑣 = ∅ → ((𝐹‘𝑣) ⊆ 𝑥 ↔ (𝐹‘∅) ⊆ 𝑥)) |
61 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑣 = 𝑦 → (𝐹‘𝑣) = (𝐹‘𝑦)) |
62 | 61 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑣 = 𝑦 → ((𝐹‘𝑣) ⊆ 𝑥 ↔ (𝐹‘𝑦) ⊆ 𝑥)) |
63 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑣 = suc 𝑦 → (𝐹‘𝑣) = (𝐹‘suc 𝑦)) |
64 | 63 | sseq1d 3948 |
. . . . . . 7
⊢ (𝑣 = suc 𝑦 → ((𝐹‘𝑣) ⊆ 𝑥 ↔ (𝐹‘suc 𝑦) ⊆ 𝑥)) |
65 | 3, 6 | eqtri 2766 |
. . . . . . . . . 10
⊢ (𝐹‘∅) = 𝐴 |
66 | 65 | sseq1i 3945 |
. . . . . . . . 9
⊢ ((𝐹‘∅) ⊆ 𝑥 ↔ 𝐴 ⊆ 𝑥) |
67 | 66 | biimpri 227 |
. . . . . . . 8
⊢ (𝐴 ⊆ 𝑥 → (𝐹‘∅) ⊆ 𝑥) |
68 | 67 | adantr 480 |
. . . . . . 7
⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐹‘∅) ⊆ 𝑥) |
69 | | uniss 4844 |
. . . . . . . . . . . . 13
⊢ ((𝐹‘𝑦) ⊆ 𝑥 → ∪ (𝐹‘𝑦) ⊆ ∪ 𝑥) |
70 | | df-tr 5188 |
. . . . . . . . . . . . . 14
⊢ (Tr 𝑥 ↔ ∪ 𝑥
⊆ 𝑥) |
71 | | sstr2 3924 |
. . . . . . . . . . . . . 14
⊢ (∪ (𝐹‘𝑦) ⊆ ∪ 𝑥 → (∪ 𝑥
⊆ 𝑥 → ∪ (𝐹‘𝑦) ⊆ 𝑥)) |
72 | 70, 71 | syl5bi 241 |
. . . . . . . . . . . . 13
⊢ (∪ (𝐹‘𝑦) ⊆ ∪ 𝑥 → (Tr 𝑥 → ∪ (𝐹‘𝑦) ⊆ 𝑥)) |
73 | 69, 72 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐹‘𝑦) ⊆ 𝑥 → (Tr 𝑥 → ∪ (𝐹‘𝑦) ⊆ 𝑥)) |
74 | 73 | anc2li 555 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑦) ⊆ 𝑥 → (Tr 𝑥 → ((𝐹‘𝑦) ⊆ 𝑥 ∧ ∪ (𝐹‘𝑦) ⊆ 𝑥))) |
75 | | unss 4114 |
. . . . . . . . . . 11
⊢ (((𝐹‘𝑦) ⊆ 𝑥 ∧ ∪ (𝐹‘𝑦) ⊆ 𝑥) ↔ ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) ⊆ 𝑥) |
76 | 74, 75 | syl6ib 250 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑦) ⊆ 𝑥 → (Tr 𝑥 → ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) ⊆ 𝑥)) |
77 | 34 | sseq1d 3948 |
. . . . . . . . . . 11
⊢ (𝑦 ∈ ω → ((𝐹‘suc 𝑦) ⊆ 𝑥 ↔ ((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) ⊆ 𝑥)) |
78 | 77 | biimprd 247 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ω → (((𝐹‘𝑦) ∪ ∪ (𝐹‘𝑦)) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥)) |
79 | 76, 78 | syl9r 78 |
. . . . . . . . 9
⊢ (𝑦 ∈ ω → ((𝐹‘𝑦) ⊆ 𝑥 → (Tr 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥))) |
80 | 79 | com23 86 |
. . . . . . . 8
⊢ (𝑦 ∈ ω → (Tr 𝑥 → ((𝐹‘𝑦) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥))) |
81 | 80 | adantld 490 |
. . . . . . 7
⊢ (𝑦 ∈ ω → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ((𝐹‘𝑦) ⊆ 𝑥 → (𝐹‘suc 𝑦) ⊆ 𝑥))) |
82 | 60, 62, 64, 68, 81 | finds2 7721 |
. . . . . 6
⊢ (𝑣 ∈ ω → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝐹‘𝑣) ⊆ 𝑥)) |
83 | 82 | com12 32 |
. . . . 5
⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → (𝑣 ∈ ω → (𝐹‘𝑣) ⊆ 𝑥)) |
84 | 83 | ralrimiv 3106 |
. . . 4
⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → ∀𝑣 ∈ ω (𝐹‘𝑣) ⊆ 𝑥) |
85 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = 𝑣 → (𝐹‘𝑦) = (𝐹‘𝑣)) |
86 | 85 | cbviunv 4966 |
. . . . . . 7
⊢ ∪ 𝑦 ∈ ω (𝐹‘𝑦) = ∪ 𝑣 ∈ ω (𝐹‘𝑣) |
87 | 15, 86 | eqtri 2766 |
. . . . . 6
⊢ 𝐶 = ∪ 𝑣 ∈ ω (𝐹‘𝑣) |
88 | 87 | sseq1i 3945 |
. . . . 5
⊢ (𝐶 ⊆ 𝑥 ↔ ∪
𝑣 ∈ ω (𝐹‘𝑣) ⊆ 𝑥) |
89 | | iunss 4971 |
. . . . 5
⊢ (∪ 𝑣 ∈ ω (𝐹‘𝑣) ⊆ 𝑥 ↔ ∀𝑣 ∈ ω (𝐹‘𝑣) ⊆ 𝑥) |
90 | 88, 89 | bitri 274 |
. . . 4
⊢ (𝐶 ⊆ 𝑥 ↔ ∀𝑣 ∈ ω (𝐹‘𝑣) ⊆ 𝑥) |
91 | 84, 90 | sylibr 233 |
. . 3
⊢ ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐶 ⊆ 𝑥) |
92 | 91 | ax-gen 1799 |
. 2
⊢
∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐶 ⊆ 𝑥) |
93 | 16, 58, 92 | 3pm3.2i 1337 |
1
⊢ (𝐴 ⊆ 𝐶 ∧ Tr 𝐶 ∧ ∀𝑥((𝐴 ⊆ 𝑥 ∧ Tr 𝑥) → 𝐶 ⊆ 𝑥)) |