![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > unisucg | Structured version Visualization version GIF version |
Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6474. (Revised by BJ, 28-Dec-2024.) |
Ref | Expression |
---|---|
unisucg | ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssequn1 4209 | . . 3 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
3 | df-tr 5284 | . . 3 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴)) |
5 | unisucs 6472 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) | |
6 | 5 | eqeq1d 2742 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
7 | 2, 4, 6 | 3bitr4d 311 | 1 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 ∪ cuni 4931 Tr wtr 5283 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-ss 3993 df-sn 4649 df-pr 4651 df-uni 4932 df-tr 5284 df-suc 6401 |
This theorem is referenced by: unisuc 6474 onunisuc 6505 |
Copyright terms: Public domain | W3C validator |