| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > unisucg | Structured version Visualization version GIF version | ||
| Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6438. (Revised by BJ, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| unisucg | ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssequn1 4166 | . . 3 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
| 3 | df-tr 5235 | . . 3 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴)) |
| 5 | unisucs 6436 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) | |
| 6 | 5 | eqeq1d 2738 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) |
| 7 | 2, 4, 6 | 3bitr4d 311 | 1 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 ⊆ wss 3931 ∪ cuni 4888 Tr wtr 5234 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-ss 3948 df-sn 4607 df-pr 4609 df-uni 4889 df-tr 5235 df-suc 6363 |
| This theorem is referenced by: unisuc 6438 onunisuc 6469 |
| Copyright terms: Public domain | W3C validator |