|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > unisucg | Structured version Visualization version GIF version | ||
| Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6462. (Revised by BJ, 28-Dec-2024.) | 
| Ref | Expression | 
|---|---|
| unisucg | ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssequn1 4185 | . . 3 ⊢ (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴) | |
| 2 | 1 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ 𝐴 ⊆ 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) | 
| 3 | df-tr 5259 | . . 3 ⊢ (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴) | |
| 4 | 3 | a1i 11 | . 2 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ 𝐴 ⊆ 𝐴)) | 
| 5 | unisucs 6460 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∪ suc 𝐴 = (∪ 𝐴 ∪ 𝐴)) | |
| 6 | 5 | eqeq1d 2738 | . 2 ⊢ (𝐴 ∈ 𝑉 → (∪ suc 𝐴 = 𝐴 ↔ (∪ 𝐴 ∪ 𝐴) = 𝐴)) | 
| 7 | 2, 4, 6 | 3bitr4d 311 | 1 ⊢ (𝐴 ∈ 𝑉 → (Tr 𝐴 ↔ ∪ suc 𝐴 = 𝐴)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∪ cun 3948 ⊆ wss 3950 ∪ cuni 4906 Tr wtr 5258 suc csuc 6385 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3955 df-ss 3967 df-sn 4626 df-pr 4628 df-uni 4907 df-tr 5259 df-suc 6389 | 
| This theorem is referenced by: unisuc 6462 onunisuc 6493 | 
| Copyright terms: Public domain | W3C validator |