MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisucg Structured version   Visualization version   GIF version

Theorem unisucg 6386
Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6387. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 ssequn1 4133 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
21a1i 11 . 2 (𝐴𝑉 → ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴))
3 df-tr 5197 . . 3 (Tr 𝐴 𝐴𝐴)
43a1i 11 . 2 (𝐴𝑉 → (Tr 𝐴 𝐴𝐴))
5 unisucs 6385 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
65eqeq1d 2733 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
72, 4, 63bitr4d 311 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  cun 3895  wss 3897   cuni 4856  Tr wtr 5196  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-ss 3914  df-sn 4574  df-pr 4576  df-uni 4857  df-tr 5197  df-suc 6312
This theorem is referenced by:  unisuc  6387  onunisuc  6418
  Copyright terms: Public domain W3C validator