MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unisucg Structured version   Visualization version   GIF version

Theorem unisucg 6365
Description: A transitive class is equal to the union of its successor, closed form. Combines Theorem 4E of [Enderton] p. 72 and Exercise 6 of [Enderton] p. 73. (Contributed by NM, 30-Aug-1993.) Generalize from unisuc 6366. (Revised by BJ, 28-Dec-2024.)
Assertion
Ref Expression
unisucg (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))

Proof of Theorem unisucg
StepHypRef Expression
1 ssequn1 4124 . . 3 ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴)
21a1i 11 . 2 (𝐴𝑉 → ( 𝐴𝐴 ↔ ( 𝐴𝐴) = 𝐴))
3 df-tr 5204 . . 3 (Tr 𝐴 𝐴𝐴)
43a1i 11 . 2 (𝐴𝑉 → (Tr 𝐴 𝐴𝐴))
5 unisucs 6364 . . 3 (𝐴𝑉 suc 𝐴 = ( 𝐴𝐴))
65eqeq1d 2738 . 2 (𝐴𝑉 → ( suc 𝐴 = 𝐴 ↔ ( 𝐴𝐴) = 𝐴))
72, 4, 63bitr4d 310 1 (𝐴𝑉 → (Tr 𝐴 suc 𝐴 = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  cun 3894  wss 3896   cuni 4849  Tr wtr 5203  suc csuc 6290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3442  df-un 3901  df-in 3903  df-ss 3913  df-sn 4571  df-pr 4573  df-uni 4850  df-tr 5204  df-suc 6294
This theorem is referenced by:  unisuc  6366  onunisuc  6396
  Copyright terms: Public domain W3C validator