Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dftr5 | Structured version Visualization version GIF version |
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.) Avoid ax-11 2152. (Revised by BTernaryTau, 28-Dec-2024.) |
Ref | Expression |
---|---|
dftr5 | ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | impexp 452 | . . . . 5 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) | |
2 | 1 | albii 1819 | . . . 4 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
3 | df-ral 3063 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) | |
4 | r19.21v 3173 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) | |
5 | 2, 3, 4 | 3bitr2i 299 | . . 3 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
7 | dftr2c 5201 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
8 | df-ral 3063 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∀wal 1537 ∈ wcel 2104 ∀wral 3062 Tr wtr 5198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-v 3439 df-in 3899 df-ss 3909 df-uni 4845 df-tr 5199 |
This theorem is referenced by: dftr3 5204 smobeth 10392 |
Copyright terms: Public domain | W3C validator |