MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr5 Structured version   Visualization version   GIF version

Theorem dftr5 5269
Description: An alternate way of defining a transitive class. Definition 1.1 of [Schloeder] p. 1. (Contributed by NM, 20-Mar-2004.) Avoid ax-11 2153. (Revised by BTernaryTau, 28-Dec-2024.)
Assertion
Ref Expression
dftr5 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem dftr5
StepHypRef Expression
1 impexp 450 . . . . 5 (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
21albii 1820 . . . 4 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
3 df-ral 3061 . . . 4 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
4 r19.21v 3178 . . . 4 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
52, 3, 43bitr2i 299 . . 3 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
65albii 1820 . 2 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
7 dftr2c 5268 . 2 (Tr 𝐴 ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
8 df-ral 3061 . 2 (∀𝑥𝐴𝑦𝑥 𝑦𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
96, 7, 83bitr4i 303 1 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1538  wcel 2105  wral 3060  Tr wtr 5265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-v 3475  df-in 3955  df-ss 3965  df-uni 4909  df-tr 5266
This theorem is referenced by:  dftr3  5271  smobeth  10587  oaun3lem1  42587
  Copyright terms: Public domain W3C validator