MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr5 Structured version   Visualization version   GIF version

Theorem dftr5 5198
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
Assertion
Ref Expression
dftr5 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr5
StepHypRef Expression
1 dftr2 5197 . 2 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2 alcom 2159 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
3 impexp 450 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
43albii 1825 . . . . . . 7 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
5 df-ral 3070 . . . . . . 7 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
64, 5bitr4i 277 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦𝑥 (𝑥𝐴𝑦𝐴))
7 r19.21v 3102 . . . . . 6 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
86, 7bitri 274 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
98albii 1825 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
10 df-ral 3070 . . . 4 (∀𝑥𝐴𝑦𝑥 𝑦𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
119, 10bitr4i 277 . . 3 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
122, 11bitri 274 . 2 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
131, 12bitri 274 1 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539  wcel 2109  wral 3065  Tr wtr 5195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-11 2157  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-v 3432  df-in 3898  df-ss 3908  df-uni 4845  df-tr 5196
This theorem is referenced by:  dftr3  5199  smobeth  10326
  Copyright terms: Public domain W3C validator