| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftr5 | Structured version Visualization version GIF version | ||
| Description: An alternate way of defining a transitive class. Definition 1.1 of [Schloeder] p. 1. (Contributed by NM, 20-Mar-2004.) Avoid ax-11 2157. (Revised by BTernaryTau, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| dftr5 | ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | impexp 450 | . . . . 5 ⊢ (((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ (𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) | |
| 2 | 1 | albii 1819 | . . . 4 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) |
| 3 | df-ral 3062 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴) ↔ ∀𝑦(𝑦 ∈ 𝑥 → (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴))) | |
| 4 | r19.21v 3180 | . . . 4 ⊢ (∀𝑦 ∈ 𝑥 (𝑥 ∈ 𝐴 → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) | |
| 5 | 2, 3, 4 | 3bitr2i 299 | . . 3 ⊢ (∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
| 6 | 5 | albii 1819 | . 2 ⊢ (∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) |
| 7 | dftr2c 5262 | . 2 ⊢ (Tr 𝐴 ↔ ∀𝑥∀𝑦((𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴)) | |
| 8 | df-ral 3062 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴 ↔ ∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (Tr 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 𝑦 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2108 ∀wral 3061 Tr wtr 5259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-v 3482 df-ss 3968 df-uni 4908 df-tr 5260 |
| This theorem is referenced by: dftr3 5265 smobeth 10626 oaun3lem1 43387 |
| Copyright terms: Public domain | W3C validator |