MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dftr5 Structured version   Visualization version   GIF version

Theorem dftr5 5148
Description: An alternate way of defining a transitive class. (Contributed by NM, 20-Mar-2004.)
Assertion
Ref Expression
dftr5 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem dftr5
StepHypRef Expression
1 dftr2 5147 . 2 (Tr 𝐴 ↔ ∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
2 alcom 2164 . . 3 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴))
3 impexp 454 . . . . . . . 8 (((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
43albii 1821 . . . . . . 7 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
5 df-ral 3131 . . . . . . 7 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ ∀𝑦(𝑦𝑥 → (𝑥𝐴𝑦𝐴)))
64, 5bitr4i 281 . . . . . 6 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑦𝑥 (𝑥𝐴𝑦𝐴))
7 r19.21v 3163 . . . . . 6 (∀𝑦𝑥 (𝑥𝐴𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
86, 7bitri 278 . . . . 5 (∀𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ (𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
98albii 1821 . . . 4 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
10 df-ral 3131 . . . 4 (∀𝑥𝐴𝑦𝑥 𝑦𝐴 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝑥 𝑦𝐴))
119, 10bitr4i 281 . . 3 (∀𝑥𝑦((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
122, 11bitri 278 . 2 (∀𝑦𝑥((𝑦𝑥𝑥𝐴) → 𝑦𝐴) ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
131, 12bitri 278 1 (Tr 𝐴 ↔ ∀𝑥𝐴𝑦𝑥 𝑦𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1536  wcel 2115  wral 3126  Tr wtr 5145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2178  ax-ext 2793
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2800  df-cleq 2814  df-clel 2892  df-nfc 2960  df-ral 3131  df-v 3473  df-in 3917  df-ss 3927  df-uni 4812  df-tr 5146
This theorem is referenced by:  dftr3  5149  smobeth  9985
  Copyright terms: Public domain W3C validator