Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ifeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq2 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3417 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | 1 | uneq2d 4108 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑})) |
3 | dfif6 4474 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) | |
4 | dfif6 4474 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
5 | 2, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 {crab 3404 ∪ cun 3895 ifcif 4471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3443 df-un 3902 df-if 4472 |
This theorem is referenced by: ifeq12 4489 ifeq2d 4491 ifbieq2i 4496 somincom 6062 mdetunilem9 21852 prmorcht 26410 pclogsum 26446 matunitlindflem1 35845 ftc1anclem6 35927 ftc1anclem8 35929 ftc1anc 35930 hdmap1cbv 40037 reabssgn 41478 hoidmv1le 44383 hoidmvlelem3 44386 vonn0ioo 44476 vonn0icc 44477 |
Copyright terms: Public domain | W3C validator |