| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifeq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| ifeq2 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeq 3423 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 2 | 1 | uneq2d 4134 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑})) |
| 3 | dfif6 4494 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) | |
| 4 | dfif6 4494 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
| 5 | 2, 3, 4 | 3eqtr4g 2790 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 {crab 3408 ∪ cun 3915 ifcif 4491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-un 3922 df-if 4492 |
| This theorem is referenced by: ifeq12 4510 ifeq2d 4512 ifbieq2i 4517 somincom 6110 mdetunilem9 22514 prmorcht 27095 pclogsum 27133 matunitlindflem1 37617 ftc1anclem6 37699 ftc1anclem8 37701 ftc1anc 37702 hdmap1cbv 41803 reabssgn 43632 hoidmv1le 46599 hoidmvlelem3 46602 vonn0ioo 46692 vonn0icc 46693 |
| Copyright terms: Public domain | W3C validator |