![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq2 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3434 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | 1 | uneq2d 4163 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑})) |
3 | dfif6 4536 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) | |
4 | dfif6 4536 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
5 | 2, 3, 4 | 3eqtr4g 2791 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1534 {crab 3419 ∪ cun 3945 ifcif 4533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-rab 3420 df-v 3464 df-un 3952 df-if 4534 |
This theorem is referenced by: ifeq12 4551 ifeq2d 4553 ifbieq2i 4558 somincom 6148 mdetunilem9 22616 prmorcht 27209 pclogsum 27247 matunitlindflem1 37319 ftc1anclem6 37401 ftc1anclem8 37403 ftc1anc 37404 hdmap1cbv 41503 reabssgn 43321 hoidmv1le 46233 hoidmvlelem3 46236 vonn0ioo 46326 vonn0icc 46327 |
Copyright terms: Public domain | W3C validator |