![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ifeq2 | Structured version Visualization version GIF version |
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
ifeq2 | ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeq 3422 | . . 3 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
2 | 1 | uneq2d 4124 | . 2 ⊢ (𝐴 = 𝐵 → ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑})) |
3 | dfif6 4490 | . 2 ⊢ if(𝜑, 𝐶, 𝐴) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑}) | |
4 | dfif6 4490 | . 2 ⊢ if(𝜑, 𝐶, 𝐵) = ({𝑥 ∈ 𝐶 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ ¬ 𝜑}) | |
5 | 2, 3, 4 | 3eqtr4g 2802 | 1 ⊢ (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1542 {crab 3408 ∪ cun 3909 ifcif 4487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3409 df-v 3448 df-un 3916 df-if 4488 |
This theorem is referenced by: ifeq12 4505 ifeq2d 4507 ifbieq2i 4512 somincom 6089 mdetunilem9 21972 prmorcht 26530 pclogsum 26566 matunitlindflem1 36077 ftc1anclem6 36159 ftc1anclem8 36161 ftc1anc 36162 hdmap1cbv 40268 reabssgn 41915 hoidmv1le 44842 hoidmvlelem3 44845 vonn0ioo 44935 vonn0icc 44936 |
Copyright terms: Public domain | W3C validator |