MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq2 Structured version   Visualization version   GIF version

Theorem ifeq2 4538
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq2 (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵))

Proof of Theorem ifeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq 3434 . . 3 (𝐴 = 𝐵 → {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥𝐵 ∣ ¬ 𝜑})
21uneq2d 4163 . 2 (𝐴 = 𝐵 → ({𝑥𝐶𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = ({𝑥𝐶𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑}))
3 dfif6 4536 . 2 if(𝜑, 𝐶, 𝐴) = ({𝑥𝐶𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
4 dfif6 4536 . 2 if(𝜑, 𝐶, 𝐵) = ({𝑥𝐶𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
52, 3, 43eqtr4g 2791 1 (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1534  {crab 3419  cun 3945  ifcif 4533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-un 3952  df-if 4534
This theorem is referenced by:  ifeq12  4551  ifeq2d  4553  ifbieq2i  4558  somincom  6148  mdetunilem9  22616  prmorcht  27209  pclogsum  27247  matunitlindflem1  37319  ftc1anclem6  37401  ftc1anclem8  37403  ftc1anc  37404  hdmap1cbv  41503  reabssgn  43321  hoidmv1le  46233  hoidmvlelem3  46236  vonn0ioo  46326  vonn0icc  46327
  Copyright terms: Public domain W3C validator