MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifeq2 Structured version   Visualization version   GIF version

Theorem ifeq2 4481
Description: Equality theorem for conditional operator. (Contributed by NM, 1-Sep-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
ifeq2 (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵))

Proof of Theorem ifeq2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rabeq 3409 . . 3 (𝐴 = 𝐵 → {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥𝐵 ∣ ¬ 𝜑})
21uneq2d 4119 . 2 (𝐴 = 𝐵 → ({𝑥𝐶𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑}) = ({𝑥𝐶𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑}))
3 dfif6 4479 . 2 if(𝜑, 𝐶, 𝐴) = ({𝑥𝐶𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
4 dfif6 4479 . 2 if(𝜑, 𝐶, 𝐵) = ({𝑥𝐶𝜑} ∪ {𝑥𝐵 ∣ ¬ 𝜑})
52, 3, 43eqtr4g 2789 1 (𝐴 = 𝐵 → if(𝜑, 𝐶, 𝐴) = if(𝜑, 𝐶, 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  {crab 3394  cun 3901  ifcif 4476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-un 3908  df-if 4477
This theorem is referenced by:  ifeq12  4495  ifeq2d  4497  ifbieq2i  4502  somincom  6083  mdetunilem9  22505  prmorcht  27086  pclogsum  27124  matunitlindflem1  37600  ftc1anclem6  37682  ftc1anclem8  37684  ftc1anc  37685  hdmap1cbv  41785  reabssgn  43613  hoidmv1le  46579  hoidmvlelem3  46582  vonn0ioo  46672  vonn0icc  46673
  Copyright terms: Public domain W3C validator