![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiunv2 | Structured version Visualization version GIF version |
Description: Define double indexed union. (Contributed by FL, 6-Nov-2013.) |
Ref | Expression |
---|---|
dfiunv2 | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4998 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}) |
3 | 2 | iuneq2i 5018 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} |
4 | df-iun 4998 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} | |
5 | vex 3482 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | eleq1w 2822 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
7 | 6 | rexbidv 3177 | . . . . 5 ⊢ (𝑤 = 𝑧 → (∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) |
8 | 5, 7 | elab 3681 | . . . 4 ⊢ (𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
9 | 8 | rexbii 3092 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
10 | 9 | abbii 2807 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
11 | 3, 4, 10 | 3eqtri 2767 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-v 3480 df-ss 3980 df-iun 4998 |
This theorem is referenced by: wspniunwspnon 29953 fusgr2wsp2nb 30363 |
Copyright terms: Public domain | W3C validator |