Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiunv2 | Structured version Visualization version GIF version |
Description: Define double indexed union. (Contributed by FL, 6-Nov-2013.) |
Ref | Expression |
---|---|
dfiunv2 | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4926 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}) |
3 | 2 | iuneq2i 4945 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} |
4 | df-iun 4926 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} | |
5 | vex 3433 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | eleq1w 2821 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
7 | 6 | rexbidv 3224 | . . . . 5 ⊢ (𝑤 = 𝑧 → (∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) |
8 | 5, 7 | elab 3608 | . . . 4 ⊢ (𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
9 | 8 | rexbii 3179 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
10 | 9 | abbii 2808 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
11 | 3, 4, 10 | 3eqtri 2770 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2106 {cab 2715 ∃wrex 3065 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-v 3431 df-in 3893 df-ss 3903 df-iun 4926 |
This theorem is referenced by: wspniunwspnon 28296 fusgr2wsp2nb 28706 |
Copyright terms: Public domain | W3C validator |