![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfiunv2 | Structured version Visualization version GIF version |
Description: Define double indexed union. (Contributed by FL, 6-Nov-2013.) |
Ref | Expression |
---|---|
dfiunv2 | ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4999 | . . . 4 ⊢ ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}) |
3 | 2 | iuneq2i 5018 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} |
4 | df-iun 4999 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} | |
5 | vex 3478 | . . . . 5 ⊢ 𝑧 ∈ V | |
6 | eleq1w 2816 | . . . . . 6 ⊢ (𝑤 = 𝑧 → (𝑤 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
7 | 6 | rexbidv 3178 | . . . . 5 ⊢ (𝑤 = 𝑧 → (∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶 ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶)) |
8 | 5, 7 | elab 3668 | . . . 4 ⊢ (𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
9 | 8 | rexbii 3094 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶} ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶) |
10 | 9 | abbii 2802 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ {𝑤 ∣ ∃𝑦 ∈ 𝐵 𝑤 ∈ 𝐶}} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
11 | 3, 4, 10 | 3eqtri 2764 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 ∪ 𝑦 ∈ 𝐵 𝐶 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 ∈ 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 {cab 2709 ∃wrex 3070 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-v 3476 df-in 3955 df-ss 3965 df-iun 4999 |
This theorem is referenced by: wspniunwspnon 29432 fusgr2wsp2nb 29842 |
Copyright terms: Public domain | W3C validator |