| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspniunwspnon | Structured version Visualization version GIF version | ||
| Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.) |
| Ref | Expression |
|---|---|
| wspniunwspnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wspniunwspnon | ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wspthsnonn0vne 29854 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥 ≠ 𝑦) | |
| 2 | 1 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
| 3 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
| 4 | ne0i 4307 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) | |
| 5 | 3, 4 | impel 505 | . . . . . . . . . 10 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥 ≠ 𝑦) |
| 6 | 5 | necomd 2981 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦 ≠ 𝑥) |
| 7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦 ≠ 𝑥)) |
| 8 | 7 | pm4.71rd 562 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
| 9 | 8 | rexbidv 3158 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
| 10 | rexdifsn 4761 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
| 11 | 9, 10 | bitr4di 289 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 12 | 11 | rexbidv 3158 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 13 | wspniunwspnon.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 14 | 13 | wspthsnwspthsnon 29853 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| 15 | vex 3454 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 16 | eleq1w 2812 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
| 17 | 16 | rexbidv 3158 | . . . . . 6 ⊢ (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 18 | 17 | rexbidv 3158 | . . . . 5 ⊢ (𝑝 = 𝑤 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 19 | 15, 18 | elab 3649 | . . . 4 ⊢ (𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| 20 | 12, 14, 19 | 3bitr4g 314 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})) |
| 21 | 20 | eqrdv 2728 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}) |
| 22 | dfiunv2 5002 | . 2 ⊢ ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} | |
| 23 | 21, 22 | eqtr4di 2783 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ∃wrex 3054 ∖ cdif 3914 ∅c0 4299 {csn 4592 ∪ ciun 4958 ‘cfv 6514 (class class class)co 7390 ℕcn 12193 Vtxcvtx 28930 WSPathsN cwwspthsn 29765 WSPathsNOn cwwspthsnon 29766 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-wlks 29534 df-wlkson 29535 df-trls 29627 df-trlson 29628 df-pths 29651 df-spths 29652 df-spthson 29654 df-wwlks 29767 df-wwlksn 29768 df-wwlksnon 29769 df-wspthsn 29770 df-wspthsnon 29771 |
| This theorem is referenced by: frgrhash2wsp 30268 |
| Copyright terms: Public domain | W3C validator |