| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspniunwspnon | Structured version Visualization version GIF version | ||
| Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.) |
| Ref | Expression |
|---|---|
| wspniunwspnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wspniunwspnon | ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wspthsnonn0vne 29847 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥 ≠ 𝑦) | |
| 2 | 1 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
| 3 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
| 4 | ne0i 4304 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) | |
| 5 | 3, 4 | impel 505 | . . . . . . . . . 10 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥 ≠ 𝑦) |
| 6 | 5 | necomd 2980 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦 ≠ 𝑥) |
| 7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦 ≠ 𝑥)) |
| 8 | 7 | pm4.71rd 562 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
| 9 | 8 | rexbidv 3157 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
| 10 | rexdifsn 4758 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
| 11 | 9, 10 | bitr4di 289 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 12 | 11 | rexbidv 3157 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 13 | wspniunwspnon.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 14 | 13 | wspthsnwspthsnon 29846 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| 15 | vex 3451 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 16 | eleq1w 2811 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
| 17 | 16 | rexbidv 3157 | . . . . . 6 ⊢ (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 18 | 17 | rexbidv 3157 | . . . . 5 ⊢ (𝑝 = 𝑤 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 19 | 15, 18 | elab 3646 | . . . 4 ⊢ (𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| 20 | 12, 14, 19 | 3bitr4g 314 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})) |
| 21 | 20 | eqrdv 2727 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}) |
| 22 | dfiunv2 4999 | . 2 ⊢ ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} | |
| 23 | 21, 22 | eqtr4di 2782 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ≠ wne 2925 ∃wrex 3053 ∖ cdif 3911 ∅c0 4296 {csn 4589 ∪ ciun 4955 ‘cfv 6511 (class class class)co 7387 ℕcn 12186 Vtxcvtx 28923 WSPathsN cwwspthsn 29758 WSPathsNOn cwwspthsnon 29759 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-hash 14296 df-word 14479 df-wlks 29527 df-wlkson 29528 df-trls 29620 df-trlson 29621 df-pths 29644 df-spths 29645 df-spthson 29647 df-wwlks 29760 df-wwlksn 29761 df-wwlksnon 29762 df-wspthsn 29763 df-wspthsnon 29764 |
| This theorem is referenced by: frgrhash2wsp 30261 |
| Copyright terms: Public domain | W3C validator |