Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > wspniunwspnon | Structured version Visualization version GIF version |
Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.) |
Ref | Expression |
---|---|
wspniunwspnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wspniunwspnon | ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthsnonn0vne 28261 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥 ≠ 𝑦) | |
2 | 1 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
3 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
4 | ne0i 4273 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) | |
5 | 3, 4 | impel 505 | . . . . . . . . . 10 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥 ≠ 𝑦) |
6 | 5 | necomd 3000 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦 ≠ 𝑥) |
7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦 ≠ 𝑥)) |
8 | 7 | pm4.71rd 562 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
9 | 8 | rexbidv 3227 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
10 | rexdifsn 4732 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
11 | 9, 10 | bitr4di 288 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
12 | 11 | rexbidv 3227 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
13 | wspniunwspnon.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
14 | 13 | wspthsnwspthsnon 28260 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
15 | vex 3434 | . . . . 5 ⊢ 𝑤 ∈ V | |
16 | eleq1w 2822 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
17 | 16 | rexbidv 3227 | . . . . . 6 ⊢ (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
18 | 17 | rexbidv 3227 | . . . . 5 ⊢ (𝑝 = 𝑤 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
19 | 15, 18 | elab 3610 | . . . 4 ⊢ (𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
20 | 12, 14, 19 | 3bitr4g 313 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})) |
21 | 20 | eqrdv 2737 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}) |
22 | dfiunv2 4969 | . 2 ⊢ ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} | |
23 | 21, 22 | eqtr4di 2797 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ≠ wne 2944 ∃wrex 3066 ∖ cdif 3888 ∅c0 4261 {csn 4566 ∪ ciun 4929 ‘cfv 6430 (class class class)co 7268 ℕcn 11956 Vtxcvtx 27347 WSPathsN cwwspthsn 28172 WSPathsNOn cwwspthsnon 28173 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-n0 12217 df-z 12303 df-uz 12565 df-fz 13222 df-fzo 13365 df-hash 14026 df-word 14199 df-wlks 27947 df-wlkson 27948 df-trls 28040 df-trlson 28041 df-pths 28063 df-spths 28064 df-spthson 28066 df-wwlks 28174 df-wwlksn 28175 df-wwlksnon 28176 df-wspthsn 28177 df-wspthsnon 28178 |
This theorem is referenced by: frgrhash2wsp 28675 |
Copyright terms: Public domain | W3C validator |