| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wspniunwspnon | Structured version Visualization version GIF version | ||
| Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.) |
| Ref | Expression |
|---|---|
| wspniunwspnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| wspniunwspnon | ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wspthsnonn0vne 29899 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥 ≠ 𝑦) | |
| 2 | 1 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
| 3 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
| 4 | ne0i 4316 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) | |
| 5 | 3, 4 | impel 505 | . . . . . . . . . 10 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥 ≠ 𝑦) |
| 6 | 5 | necomd 2987 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦 ≠ 𝑥) |
| 7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦 ≠ 𝑥)) |
| 8 | 7 | pm4.71rd 562 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
| 9 | 8 | rexbidv 3164 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
| 10 | rexdifsn 4770 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
| 11 | 9, 10 | bitr4di 289 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 12 | 11 | rexbidv 3164 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 13 | wspniunwspnon.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 14 | 13 | wspthsnwspthsnon 29898 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| 15 | vex 3463 | . . . . 5 ⊢ 𝑤 ∈ V | |
| 16 | eleq1w 2817 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
| 17 | 16 | rexbidv 3164 | . . . . . 6 ⊢ (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 18 | 17 | rexbidv 3164 | . . . . 5 ⊢ (𝑝 = 𝑤 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
| 19 | 15, 18 | elab 3658 | . . . 4 ⊢ (𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| 20 | 12, 14, 19 | 3bitr4g 314 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})) |
| 21 | 20 | eqrdv 2733 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}) |
| 22 | dfiunv2 5011 | . 2 ⊢ ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} | |
| 23 | 21, 22 | eqtr4di 2788 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 {cab 2713 ≠ wne 2932 ∃wrex 3060 ∖ cdif 3923 ∅c0 4308 {csn 4601 ∪ ciun 4967 ‘cfv 6531 (class class class)co 7405 ℕcn 12240 Vtxcvtx 28975 WSPathsN cwwspthsn 29810 WSPathsNOn cwwspthsnon 29811 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-hash 14349 df-word 14532 df-wlks 29579 df-wlkson 29580 df-trls 29672 df-trlson 29673 df-pths 29696 df-spths 29697 df-spthson 29699 df-wwlks 29812 df-wwlksn 29813 df-wwlksnon 29814 df-wspthsn 29815 df-wspthsnon 29816 |
| This theorem is referenced by: frgrhash2wsp 30313 |
| Copyright terms: Public domain | W3C validator |