![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > wspniunwspnon | Structured version Visualization version GIF version |
Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.) |
Ref | Expression |
---|---|
wspniunwspnon.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
wspniunwspnon | ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wspthsnonn0vne 29950 | . . . . . . . . . . . . 13 ⊢ ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥 ≠ 𝑦) | |
2 | 1 | ex 412 | . . . . . . . . . . . 12 ⊢ (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
3 | 2 | adantr 480 | . . . . . . . . . . 11 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥 ≠ 𝑦)) |
4 | ne0i 4364 | . . . . . . . . . . 11 ⊢ (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) | |
5 | 3, 4 | impel 505 | . . . . . . . . . 10 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥 ≠ 𝑦) |
6 | 5 | necomd 3002 | . . . . . . . . 9 ⊢ (((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦 ≠ 𝑥) |
7 | 6 | ex 412 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦 ≠ 𝑥)) |
8 | 7 | pm4.71rd 562 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
9 | 8 | rexbidv 3185 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))) |
10 | rexdifsn 4819 | . . . . . 6 ⊢ (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ 𝑉 (𝑦 ≠ 𝑥 ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
11 | 9, 10 | bitr4di 289 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
12 | 11 | rexbidv 3185 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
13 | wspniunwspnon.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
14 | 13 | wspthsnwspthsnon 29949 | . . . 4 ⊢ (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ 𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
15 | vex 3492 | . . . . 5 ⊢ 𝑤 ∈ V | |
16 | eleq1w 2827 | . . . . . . 7 ⊢ (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) | |
17 | 16 | rexbidv 3185 | . . . . . 6 ⊢ (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
18 | 17 | rexbidv 3185 | . . . . 5 ⊢ (𝑝 = 𝑤 → (∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))) |
19 | 15, 18 | elab 3694 | . . . 4 ⊢ (𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
20 | 12, 14, 19 | 3bitr4g 314 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})) |
21 | 20 | eqrdv 2738 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}) |
22 | dfiunv2 5058 | . 2 ⊢ ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥 ∈ 𝑉 ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} | |
23 | 21, 22 | eqtr4di 2798 | 1 ⊢ ((𝑁 ∈ ℕ ∧ 𝐺 ∈ 𝑈) → (𝑁 WSPathsN 𝐺) = ∪ 𝑥 ∈ 𝑉 ∪ 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ≠ wne 2946 ∃wrex 3076 ∖ cdif 3973 ∅c0 4352 {csn 4648 ∪ ciun 5015 ‘cfv 6573 (class class class)co 7448 ℕcn 12293 Vtxcvtx 29031 WSPathsN cwwspthsn 29861 WSPathsNOn cwwspthsnon 29862 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ifp 1064 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-wlks 29635 df-wlkson 29636 df-trls 29728 df-trlson 29729 df-pths 29752 df-spths 29753 df-spthson 29755 df-wwlks 29863 df-wwlksn 29864 df-wwlksnon 29865 df-wspthsn 29866 df-wspthsnon 29867 |
This theorem is referenced by: frgrhash2wsp 30364 |
Copyright terms: Public domain | W3C validator |