MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspniunwspnon Structured version   Visualization version   GIF version

Theorem wspniunwspnon 28288
Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
Hypothesis
Ref Expression
wspniunwspnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspniunwspnon ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦

Proof of Theorem wspniunwspnon
Dummy variables 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsnonn0vne 28282 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥𝑦)
21ex 413 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
32adantr 481 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
4 ne0i 4268 . . . . . . . . . . 11 (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅)
53, 4impel 506 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥𝑦)
65necomd 2999 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦𝑥)
76ex 413 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦𝑥))
87pm4.71rd 563 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
98rexbidv 3226 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
10 rexdifsn 4727 . . . . . 6 (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
119, 10bitr4di 289 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1211rexbidv 3226 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
13 wspniunwspnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
1413wspthsnwspthsnon 28281 . . . 4 (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
15 vex 3436 . . . . 5 𝑤 ∈ V
16 eleq1w 2821 . . . . . . 7 (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1716rexbidv 3226 . . . . . 6 (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1817rexbidv 3226 . . . . 5 (𝑝 = 𝑤 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1915, 18elab 3609 . . . 4 (𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
2012, 14, 193bitr4g 314 . . 3 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}))
2120eqrdv 2736 . 2 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})
22 dfiunv2 4965 . 2 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}
2321, 22eqtr4di 2796 1 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {cab 2715  wne 2943  wrex 3065  cdif 3884  c0 4256  {csn 4561   ciun 4924  cfv 6433  (class class class)co 7275  cn 11973  Vtxcvtx 27366   WSPathsN cwwspthsn 28193   WSPathsNOn cwwspthsnon 28194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-wlks 27966  df-wlkson 27967  df-trls 28060  df-trlson 28061  df-pths 28084  df-spths 28085  df-spthson 28087  df-wwlks 28195  df-wwlksn 28196  df-wwlksnon 28197  df-wspthsn 28198  df-wspthsnon 28199
This theorem is referenced by:  frgrhash2wsp  28696
  Copyright terms: Public domain W3C validator