MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspniunwspnon Structured version   Visualization version   GIF version

Theorem wspniunwspnon 29872
Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
Hypothesis
Ref Expression
wspniunwspnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspniunwspnon ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦

Proof of Theorem wspniunwspnon
Dummy variables 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsnonn0vne 29866 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥𝑦)
21ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
32adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
4 ne0i 4292 . . . . . . . . . . 11 (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅)
53, 4impel 505 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥𝑦)
65necomd 2980 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦𝑥)
76ex 412 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦𝑥))
87pm4.71rd 562 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
98rexbidv 3153 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
10 rexdifsn 4745 . . . . . 6 (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
119, 10bitr4di 289 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1211rexbidv 3153 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
13 wspniunwspnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
1413wspthsnwspthsnon 29865 . . . 4 (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
15 vex 3440 . . . . 5 𝑤 ∈ V
16 eleq1w 2811 . . . . . . 7 (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1716rexbidv 3153 . . . . . 6 (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1817rexbidv 3153 . . . . 5 (𝑝 = 𝑤 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1915, 18elab 3635 . . . 4 (𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
2012, 14, 193bitr4g 314 . . 3 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}))
2120eqrdv 2727 . 2 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})
22 dfiunv2 4984 . 2 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}
2321, 22eqtr4di 2782 1 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wne 2925  wrex 3053  cdif 3900  c0 4284  {csn 4577   ciun 4941  cfv 6482  (class class class)co 7349  cn 12128  Vtxcvtx 28945   WSPathsN cwwspthsn 29777   WSPathsNOn cwwspthsnon 29778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-hash 14238  df-word 14421  df-wlks 29549  df-wlkson 29550  df-trls 29640  df-trlson 29641  df-pths 29663  df-spths 29664  df-spthson 29666  df-wwlks 29779  df-wwlksn 29780  df-wwlksnon 29781  df-wspthsn 29782  df-wspthsnon 29783
This theorem is referenced by:  frgrhash2wsp  30280
  Copyright terms: Public domain W3C validator