MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wspniunwspnon Structured version   Visualization version   GIF version

Theorem wspniunwspnon 29901
Description: The set of nonempty simple paths of fixed length is the double union of the simple paths of the fixed length between different vertices. (Contributed by Alexander van der Vekens, 3-Mar-2018.) (Revised by AV, 16-May-2021.) (Proof shortened by AV, 15-Mar-2022.)
Hypothesis
Ref Expression
wspniunwspnon.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
wspniunwspnon ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Distinct variable groups:   𝑥,𝐺,𝑦   𝑥,𝑁,𝑦   𝑥,𝑈,𝑦   𝑥,𝑉,𝑦

Proof of Theorem wspniunwspnon
Dummy variables 𝑝 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wspthsnonn0vne 29895 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅) → 𝑥𝑦)
21ex 412 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
32adantr 480 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → ((𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅ → 𝑥𝑦))
4 ne0i 4288 . . . . . . . . . . 11 (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ≠ ∅)
53, 4impel 505 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑥𝑦)
65necomd 2983 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐺𝑈) ∧ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)) → 𝑦𝑥)
76ex 412 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) → 𝑦𝑥))
87pm4.71rd 562 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
98rexbidv 3156 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))))
10 rexdifsn 4743 . . . . . 6 (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦𝑉 (𝑦𝑥𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
119, 10bitr4di 289 . . . . 5 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1211rexbidv 3156 . . . 4 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
13 wspniunwspnon.v . . . . 5 𝑉 = (Vtx‘𝐺)
1413wspthsnwspthsnon 29894 . . . 4 (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ ∃𝑥𝑉𝑦𝑉 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
15 vex 3440 . . . . 5 𝑤 ∈ V
16 eleq1w 2814 . . . . . . 7 (𝑝 = 𝑤 → (𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ 𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1716rexbidv 3156 . . . . . 6 (𝑝 = 𝑤 → (∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1817rexbidv 3156 . . . . 5 (𝑝 = 𝑤 → (∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦) ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)))
1915, 18elab 3630 . . . 4 (𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)} ↔ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑤 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
2012, 14, 193bitr4g 314 . . 3 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑤 ∈ (𝑁 WSPathsN 𝐺) ↔ 𝑤 ∈ {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}))
2120eqrdv 2729 . 2 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)})
22 dfiunv2 4982 . 2 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦) = {𝑝 ∣ ∃𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})𝑝 ∈ (𝑥(𝑁 WSPathsNOn 𝐺)𝑦)}
2321, 22eqtr4di 2784 1 ((𝑁 ∈ ℕ ∧ 𝐺𝑈) → (𝑁 WSPathsN 𝐺) = 𝑥𝑉 𝑦 ∈ (𝑉 ∖ {𝑥})(𝑥(𝑁 WSPathsNOn 𝐺)𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wrex 3056  cdif 3894  c0 4280  {csn 4573   ciun 4939  cfv 6481  (class class class)co 7346  cn 12125  Vtxcvtx 28974   WSPathsN cwwspthsn 29806   WSPathsNOn cwwspthsnon 29807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-hash 14238  df-word 14421  df-wlks 29578  df-wlkson 29579  df-trls 29669  df-trlson 29670  df-pths 29692  df-spths 29693  df-spthson 29695  df-wwlks 29808  df-wwlksn 29809  df-wwlksnon 29810  df-wspthsn 29811  df-wspthsnon 29812
This theorem is referenced by:  frgrhash2wsp  30312
  Copyright terms: Public domain W3C validator