Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dfiin2 | Structured version Visualization version GIF version |
Description: Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) |
Ref | Expression |
---|---|
dfiun2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
dfiin2 | ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfiin2g 4958 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵}) | |
2 | dfiun2.1 | . . 3 ⊢ 𝐵 ∈ V | |
3 | 2 | a1i 11 | . 2 ⊢ (𝑥 ∈ 𝐴 → 𝐵 ∈ V) |
4 | 1, 3 | mprg 3077 | 1 ⊢ ∩ 𝑥 ∈ 𝐴 𝐵 = ∩ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∈ wcel 2108 {cab 2715 ∃wrex 3064 Vcvv 3422 ∩ cint 4876 ∩ ciin 4922 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-int 4877 df-iin 4924 |
This theorem is referenced by: fniinfv 6828 scott0 9575 cfval2 9947 cflim3 9949 cflim2 9950 cfss 9952 hauscmplem 22465 ptbasfi 22640 dihglblem5 39239 dihglb2 39283 intima0 41145 |
Copyright terms: Public domain | W3C validator |