MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfiin2 Structured version   Visualization version   GIF version

Theorem dfiin2 4986
Description: Alternate definition of indexed intersection when 𝐵 is a set. Definition 15(b) of [Suppes] p. 44. (Contributed by NM, 28-Jun-1998.) (Proof shortened by Andrew Salmon, 25-Jul-2011.)
Hypothesis
Ref Expression
dfiun2.1 𝐵 ∈ V
Assertion
Ref Expression
dfiin2 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem dfiin2
StepHypRef Expression
1 dfiin2g 4984 . 2 (∀𝑥𝐴 𝐵 ∈ V → 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵})
2 dfiun2.1 . . 3 𝐵 ∈ V
32a1i 11 . 2 (𝑥𝐴𝐵 ∈ V)
41, 3mprg 3050 1 𝑥𝐴 𝐵 = {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3438   cint 4899   ciin 4945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3440  df-int 4900  df-iin 4947
This theorem is referenced by:  fniinfv  6905  scott0  9801  cfval2  10173  cflim3  10175  cflim2  10176  cfss  10178  hauscmplem  23309  ptbasfi  23484  dihglblem5  41277  dihglb2  41321  intima0  43621
  Copyright terms: Public domain W3C validator