| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvixp | Structured version Visualization version GIF version | ||
| Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) |
| Ref | Expression |
|---|---|
| cbvixp.1 | ⊢ Ⅎ𝑦𝐵 |
| cbvixp.2 | ⊢ Ⅎ𝑥𝐶 |
| cbvixp.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbvixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvixp.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfel2 2913 | . . . . 5 ⊢ Ⅎ𝑦(𝑓‘𝑥) ∈ 𝐵 |
| 3 | cbvixp.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfel2 2913 | . . . . 5 ⊢ Ⅎ𝑥(𝑓‘𝑦) ∈ 𝐶 |
| 5 | fveq2 6822 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) | |
| 6 | cbvixp.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 7 | 5, 6 | eleq12d 2825 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑦) ∈ 𝐶)) |
| 8 | 2, 4, 7 | cbvralw 3274 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶) |
| 9 | 8 | anbi2i 623 | . . 3 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)) |
| 10 | 9 | abbii 2798 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} |
| 11 | dfixp 8823 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
| 12 | dfixp 8823 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} | |
| 13 | 10, 11, 12 | 3eqtr4i 2764 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 Ⅎwnfc 2879 ∀wral 3047 Fn wfn 6476 ‘cfv 6481 Xcixp 8821 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-iota 6437 df-fn 6484 df-fv 6489 df-ixp 8822 |
| This theorem is referenced by: mptelixpg 8859 ixpiunwdom 9476 prdsbas3 17385 elptr2 23490 ptunimpt 23511 ptcldmpt 23530 finixpnum 37651 ptrest 37665 hoimbl2 46709 vonhoire 46716 vonn0ioo2 46734 vonn0icc2 46736 |
| Copyright terms: Public domain | W3C validator |