MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixp Structured version   Visualization version   GIF version

Theorem cbvixp 8846
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
cbvixp.1 𝑦𝐵
cbvixp.2 𝑥𝐶
cbvixp.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixp X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cbvixp.1 . . . . . 6 𝑦𝐵
21nfel2 2914 . . . . 5 𝑦(𝑓𝑥) ∈ 𝐵
3 cbvixp.2 . . . . . 6 𝑥𝐶
43nfel2 2914 . . . . 5 𝑥(𝑓𝑦) ∈ 𝐶
5 fveq2 6830 . . . . . 6 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
6 cbvixp.3 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
75, 6eleq12d 2827 . . . . 5 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑦) ∈ 𝐶))
82, 4, 7cbvralw 3275 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)
98anbi2i 623 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶))
109abbii 2800 . 2 {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
11 dfixp 8831 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
12 dfixp 8831 . 2 X𝑦𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
1310, 11, 123eqtr4i 2766 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wnfc 2880  wral 3048   Fn wfn 6483  cfv 6488  Xcixp 8829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-iota 6444  df-fn 6491  df-fv 6496  df-ixp 8830
This theorem is referenced by:  mptelixpg  8867  ixpiunwdom  9485  prdsbas3  17389  elptr2  23492  ptunimpt  23513  ptcldmpt  23532  finixpnum  37668  ptrest  37682  hoimbl2  46790  vonhoire  46797  vonn0ioo2  46815  vonn0icc2  46817
  Copyright terms: Public domain W3C validator