Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvixp | Structured version Visualization version GIF version |
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.) |
Ref | Expression |
---|---|
cbvixp.1 | ⊢ Ⅎ𝑦𝐵 |
cbvixp.2 | ⊢ Ⅎ𝑥𝐶 |
cbvixp.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvixp | ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvixp.1 | . . . . . 6 ⊢ Ⅎ𝑦𝐵 | |
2 | 1 | nfel2 2922 | . . . . 5 ⊢ Ⅎ𝑦(𝑓‘𝑥) ∈ 𝐵 |
3 | cbvixp.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐶 | |
4 | 3 | nfel2 2922 | . . . . 5 ⊢ Ⅎ𝑥(𝑓‘𝑦) ∈ 𝐶 |
5 | fveq2 6717 | . . . . . 6 ⊢ (𝑥 = 𝑦 → (𝑓‘𝑥) = (𝑓‘𝑦)) | |
6 | cbvixp.3 | . . . . . 6 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
7 | 5, 6 | eleq12d 2832 | . . . . 5 ⊢ (𝑥 = 𝑦 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑦) ∈ 𝐶)) |
8 | 2, 4, 7 | cbvralw 3349 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶) |
9 | 8 | anbi2i 626 | . . 3 ⊢ ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)) |
10 | 9 | abbii 2808 | . 2 ⊢ {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} |
11 | dfixp 8580 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
12 | dfixp 8580 | . 2 ⊢ X𝑦 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑓‘𝑦) ∈ 𝐶)} | |
13 | 10, 11, 12 | 3eqtr4i 2775 | 1 ⊢ X𝑥 ∈ 𝐴 𝐵 = X𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cab 2714 Ⅎwnfc 2884 ∀wral 3061 Fn wfn 6375 ‘cfv 6380 Xcixp 8578 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-iota 6338 df-fn 6383 df-fv 6388 df-ixp 8579 |
This theorem is referenced by: cbvixpv 8596 mptelixpg 8616 ixpiunwdom 9206 prdsbas3 16986 elptr2 22471 ptunimpt 22492 ptcldmpt 22511 finixpnum 35499 ptrest 35513 hoimbl2 43878 vonhoire 43885 vonn0ioo2 43903 vonn0icc2 43905 |
Copyright terms: Public domain | W3C validator |