Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixp Structured version   Visualization version   GIF version

Theorem cbvixp 8463
 Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
cbvixp.1 𝑦𝐵
cbvixp.2 𝑥𝐶
cbvixp.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixp X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cbvixp.1 . . . . . 6 𝑦𝐵
21nfel2 2973 . . . . 5 𝑦(𝑓𝑥) ∈ 𝐵
3 cbvixp.2 . . . . . 6 𝑥𝐶
43nfel2 2973 . . . . 5 𝑥(𝑓𝑦) ∈ 𝐶
5 fveq2 6645 . . . . . 6 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
6 cbvixp.3 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
75, 6eleq12d 2884 . . . . 5 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑦) ∈ 𝐶))
82, 4, 7cbvralw 3387 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)
98anbi2i 625 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶))
109abbii 2863 . 2 {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
11 dfixp 8448 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
12 dfixp 8448 . 2 X𝑦𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
1310, 11, 123eqtr4i 2831 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  {cab 2776  Ⅎwnfc 2936  ∀wral 3106   Fn wfn 6319  ‘cfv 6324  Xcixp 8446 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-v 3443  df-un 3886  df-in 3888  df-ss 3898  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-iota 6283  df-fn 6327  df-fv 6332  df-ixp 8447 This theorem is referenced by:  cbvixpv  8464  mptelixpg  8484  ixpiunwdom  9040  prdsbas3  16748  elptr2  22186  ptunimpt  22207  ptcldmpt  22226  finixpnum  35058  ptrest  35072  hoimbl2  43319  vonhoire  43326  vonn0ioo2  43344  vonn0icc2  43346
 Copyright terms: Public domain W3C validator