MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvixp Structured version   Visualization version   GIF version

Theorem cbvixp 8887
Description: Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
Hypotheses
Ref Expression
cbvixp.1 𝑦𝐵
cbvixp.2 𝑥𝐶
cbvixp.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbvixp X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbvixp
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 cbvixp.1 . . . . . 6 𝑦𝐵
21nfel2 2910 . . . . 5 𝑦(𝑓𝑥) ∈ 𝐵
3 cbvixp.2 . . . . . 6 𝑥𝐶
43nfel2 2910 . . . . 5 𝑥(𝑓𝑦) ∈ 𝐶
5 fveq2 6858 . . . . . 6 (𝑥 = 𝑦 → (𝑓𝑥) = (𝑓𝑦))
6 cbvixp.3 . . . . . 6 (𝑥 = 𝑦𝐵 = 𝐶)
75, 6eleq12d 2822 . . . . 5 (𝑥 = 𝑦 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑦) ∈ 𝐶))
82, 4, 7cbvralw 3280 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)
98anbi2i 623 . . 3 ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶))
109abbii 2796 . 2 {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
11 dfixp 8872 . 2 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
12 dfixp 8872 . 2 X𝑦𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑓𝑦) ∈ 𝐶)}
1310, 11, 123eqtr4i 2762 1 X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wnfc 2876  wral 3044   Fn wfn 6506  cfv 6511  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-iota 6464  df-fn 6514  df-fv 6519  df-ixp 8871
This theorem is referenced by:  mptelixpg  8908  ixpiunwdom  9543  prdsbas3  17444  elptr2  23461  ptunimpt  23482  ptcldmpt  23501  finixpnum  37599  ptrest  37613  hoimbl2  46663  vonhoire  46670  vonn0ioo2  46688  vonn0icc2  46690
  Copyright terms: Public domain W3C validator