| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixp0x | Structured version Visualization version GIF version | ||
| Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
| Ref | Expression |
|---|---|
| ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp 8875 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
| 2 | velsn 4608 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 3 | fn0 6652 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
| 4 | ral0 4479 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
| 5 | 4 | biantru 529 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 6 | 2, 3, 5 | 3bitr2i 299 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 7 | 6 | eqabi 2864 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
| 8 | 1, 7 | eqtr4i 2756 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∀wral 3045 ∅c0 4299 {csn 4592 Fn wfn 6509 ‘cfv 6514 Xcixp 8873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-fun 6516 df-fn 6517 df-ixp 8874 |
| This theorem is referenced by: 0elixp 8905 ptcmpfi 23707 finixpnum 37606 ioorrnopn 46310 ioorrnopnxr 46312 hoicvr 46553 ovnhoi 46608 ovnlecvr2 46615 hoiqssbl 46630 hoimbl 46636 iunhoiioo 46681 |
| Copyright terms: Public domain | W3C validator |