![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixp0x | Structured version Visualization version GIF version |
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
Ref | Expression |
---|---|
ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp 8928 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
2 | velsn 4649 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
3 | fn0 6692 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
4 | ral0 4517 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
5 | 4 | biantru 528 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
6 | 2, 3, 5 | 3bitr2i 298 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
7 | 6 | eqabi 2862 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
8 | 1, 7 | eqtr4i 2757 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∀wral 3051 ∅c0 4325 {csn 4633 Fn wfn 6549 ‘cfv 6554 Xcixp 8926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-mo 2529 df-clab 2704 df-cleq 2718 df-clel 2803 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-br 5154 df-opab 5216 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-fun 6556 df-fn 6557 df-ixp 8927 |
This theorem is referenced by: 0elixp 8958 ptcmpfi 23808 finixpnum 37306 ioorrnopn 45926 ioorrnopnxr 45928 hoicvr 46169 ovnhoi 46224 ovnlecvr2 46231 hoiqssbl 46246 hoimbl 46252 iunhoiioo 46297 |
Copyright terms: Public domain | W3C validator |