| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixp0x | Structured version Visualization version GIF version | ||
| Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
| Ref | Expression |
|---|---|
| ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp 8833 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
| 2 | velsn 4595 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 3 | fn0 6617 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
| 4 | ral0 4466 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
| 5 | 4 | biantru 529 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 6 | 2, 3, 5 | 3bitr2i 299 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 7 | 6 | eqabi 2863 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
| 8 | 1, 7 | eqtr4i 2755 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∅c0 4286 {csn 4579 Fn wfn 6481 ‘cfv 6486 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-fun 6488 df-fn 6489 df-ixp 8832 |
| This theorem is referenced by: 0elixp 8863 ptcmpfi 23717 finixpnum 37604 ioorrnopn 46306 ioorrnopnxr 46308 hoicvr 46549 ovnhoi 46604 ovnlecvr2 46611 hoiqssbl 46626 hoimbl 46632 iunhoiioo 46677 |
| Copyright terms: Public domain | W3C validator |