MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0x Structured version   Visualization version   GIF version

Theorem ixp0x 8607
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
Assertion
Ref Expression
ixp0x X𝑥 ∈ ∅ 𝐴 = {∅}

Proof of Theorem ixp0x
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dfixp 8580 . 2 X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴)}
2 velsn 4557 . . . 4 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
3 fn0 6509 . . . 4 (𝑓 Fn ∅ ↔ 𝑓 = ∅)
4 ral0 4424 . . . . 5 𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴
54biantru 533 . . . 4 (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴))
62, 3, 53bitr2i 302 . . 3 (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴))
76abbi2i 2876 . 2 {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴)}
81, 7eqtr4i 2768 1 X𝑥 ∈ ∅ 𝐴 = {∅}
Colors of variables: wff setvar class
Syntax hints:  wa 399   = wceq 1543  wcel 2110  {cab 2714  wral 3061  c0 4237  {csn 4541   Fn wfn 6375  cfv 6380  Xcixp 8578
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-fun 6382  df-fn 6383  df-ixp 8579
This theorem is referenced by:  0elixp  8610  ptcmpfi  22710  finixpnum  35499  ioorrnopn  43521  ioorrnopnxr  43523  hoicvr  43761  ovnhoi  43816  ovnlecvr2  43823  hoiqssbl  43838  hoimbl  43844  iunhoiioo  43889
  Copyright terms: Public domain W3C validator