MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixp0x Structured version   Visualization version   GIF version

Theorem ixp0x 8940
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
Assertion
Ref Expression
ixp0x X𝑥 ∈ ∅ 𝐴 = {∅}

Proof of Theorem ixp0x
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 dfixp 8913 . 2 X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴)}
2 velsn 4617 . . . 4 (𝑓 ∈ {∅} ↔ 𝑓 = ∅)
3 fn0 6669 . . . 4 (𝑓 Fn ∅ ↔ 𝑓 = ∅)
4 ral0 4488 . . . . 5 𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴
54biantru 529 . . . 4 (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴))
62, 3, 53bitr2i 299 . . 3 (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴))
76eqabi 2870 . 2 {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓𝑥) ∈ 𝐴)}
81, 7eqtr4i 2761 1 X𝑥 ∈ ∅ 𝐴 = {∅}
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2108  {cab 2713  wral 3051  c0 4308  {csn 4601   Fn wfn 6526  cfv 6531  Xcixp 8911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-mo 2539  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-fun 6533  df-fn 6534  df-ixp 8912
This theorem is referenced by:  0elixp  8943  ptcmpfi  23751  finixpnum  37629  ioorrnopn  46334  ioorrnopnxr  46336  hoicvr  46577  ovnhoi  46632  ovnlecvr2  46639  hoiqssbl  46654  hoimbl  46660  iunhoiioo  46705
  Copyright terms: Public domain W3C validator