| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixp0x | Structured version Visualization version GIF version | ||
| Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
| Ref | Expression |
|---|---|
| ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp 8818 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
| 2 | velsn 4587 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
| 3 | fn0 6607 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
| 4 | ral0 4458 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
| 5 | 4 | biantru 529 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 6 | 2, 3, 5 | 3bitr2i 299 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
| 7 | 6 | eqabi 2866 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
| 8 | 1, 7 | eqtr4i 2757 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∅c0 4278 {csn 4571 Fn wfn 6471 ‘cfv 6476 Xcixp 8816 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-fun 6478 df-fn 6479 df-ixp 8817 |
| This theorem is referenced by: 0elixp 8848 ptcmpfi 23723 finixpnum 37645 ioorrnopn 46343 ioorrnopnxr 46345 hoicvr 46586 ovnhoi 46641 ovnlecvr2 46648 hoiqssbl 46663 hoimbl 46669 iunhoiioo 46714 |
| Copyright terms: Public domain | W3C validator |