![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixp0x | Structured version Visualization version GIF version |
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
Ref | Expression |
---|---|
ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp 8890 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
2 | velsn 4637 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
3 | fn0 6672 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
4 | ral0 4505 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
5 | 4 | biantru 529 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
6 | 2, 3, 5 | 3bitr2i 299 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
7 | 6 | eqabi 2861 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
8 | 1, 7 | eqtr4i 2755 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1533 ∈ wcel 2098 {cab 2701 ∀wral 3053 ∅c0 4315 {csn 4621 Fn wfn 6529 ‘cfv 6534 Xcixp 8888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-fun 6536 df-fn 6537 df-ixp 8889 |
This theorem is referenced by: 0elixp 8920 ptcmpfi 23661 finixpnum 36976 ioorrnopn 45566 ioorrnopnxr 45568 hoicvr 45809 ovnhoi 45864 ovnlecvr2 45871 hoiqssbl 45886 hoimbl 45892 iunhoiioo 45937 |
Copyright terms: Public domain | W3C validator |