![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixp0x | Structured version Visualization version GIF version |
Description: An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.) |
Ref | Expression |
---|---|
ixp0x | ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp 8957 | . 2 ⊢ X𝑥 ∈ ∅ 𝐴 = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} | |
2 | velsn 4664 | . . . 4 ⊢ (𝑓 ∈ {∅} ↔ 𝑓 = ∅) | |
3 | fn0 6711 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ 𝑓 = ∅) | |
4 | ral0 4536 | . . . . 5 ⊢ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴 | |
5 | 4 | biantru 529 | . . . 4 ⊢ (𝑓 Fn ∅ ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
6 | 2, 3, 5 | 3bitr2i 299 | . . 3 ⊢ (𝑓 ∈ {∅} ↔ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)) |
7 | 6 | eqabi 2880 | . 2 ⊢ {∅} = {𝑓 ∣ (𝑓 Fn ∅ ∧ ∀𝑥 ∈ ∅ (𝑓‘𝑥) ∈ 𝐴)} |
8 | 1, 7 | eqtr4i 2771 | 1 ⊢ X𝑥 ∈ ∅ 𝐴 = {∅} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∅c0 4352 {csn 4648 Fn wfn 6568 ‘cfv 6573 Xcixp 8955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-fun 6575 df-fn 6576 df-ixp 8956 |
This theorem is referenced by: 0elixp 8987 ptcmpfi 23842 finixpnum 37565 ioorrnopn 46226 ioorrnopnxr 46228 hoicvr 46469 ovnhoi 46524 ovnlecvr2 46531 hoiqssbl 46546 hoimbl 46552 iunhoiioo 46597 |
Copyright terms: Public domain | W3C validator |