Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ixpsnval | Structured version Visualization version GIF version |
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.) |
Ref | Expression |
---|---|
ixpsnval | ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp 8600 | . 2 ⊢ X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} | |
2 | ralsnsg 4598 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ [𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵)) | |
3 | sbcel12 4337 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵) | |
4 | csbfv2g 6779 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘⦋𝑋 / 𝑥⦌𝑥)) | |
5 | csbvarg 4360 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
6 | 5 | fveq2d 6739 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (𝑓‘⦋𝑋 / 𝑥⦌𝑥) = (𝑓‘𝑋)) |
7 | 4, 6 | eqtrd 2778 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘𝑋)) |
8 | 7 | eleq1d 2823 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
9 | 3, 8 | syl5bb 286 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
10 | 2, 9 | bitrd 282 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
11 | 10 | anbi2d 632 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵))) |
12 | 11 | abbidv 2808 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
13 | 1, 12 | eqtrid 2790 | 1 ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2111 {cab 2715 ∀wral 3062 [wsbc 3708 ⦋csb 3825 {csn 4555 Fn wfn 6392 ‘cfv 6397 Xcixp 8598 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5206 ax-nul 5213 ax-pr 5336 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-ral 3067 df-rex 3068 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-nul 4252 df-if 4454 df-sn 4556 df-pr 4558 df-op 4562 df-uni 4834 df-br 5068 df-dm 5575 df-iota 6355 df-fn 6400 df-fv 6405 df-ixp 8599 |
This theorem is referenced by: ixpsnbasval 20271 |
Copyright terms: Public domain | W3C validator |