MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnval Structured version   Visualization version   GIF version

Theorem ixpsnval 8896
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Distinct variable groups:   𝐵,𝑓   𝑓,𝑉   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 8895 . 2 X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)}
2 ralsnsg 4667 . . . . 5 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵[𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵))
3 sbcel12 4403 . . . . . 6 ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵)
4 csbfv2g 6934 . . . . . . . 8 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋 / 𝑥𝑥))
5 csbvarg 4426 . . . . . . . . 9 (𝑋𝑉𝑋 / 𝑥𝑥 = 𝑋)
65fveq2d 6889 . . . . . . . 8 (𝑋𝑉 → (𝑓𝑋 / 𝑥𝑥) = (𝑓𝑋))
74, 6eqtrd 2766 . . . . . . 7 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋))
87eleq1d 2812 . . . . . 6 (𝑋𝑉 → (𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
93, 8bitrid 283 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
102, 9bitrd 279 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
1110anbi2d 628 . . 3 (𝑋𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)))
1211abbidv 2795 . 2 (𝑋𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
131, 12eqtrid 2778 1 (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2703  wral 3055  [wsbc 3772  csb 3888  {csn 4623   Fn wfn 6532  cfv 6537  Xcixp 8893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-dm 5679  df-iota 6489  df-fn 6540  df-fv 6545  df-ixp 8894
This theorem is referenced by:  ixpsnbasval  21064
  Copyright terms: Public domain W3C validator