| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpsnval | Structured version Visualization version GIF version | ||
| Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.) |
| Ref | Expression |
|---|---|
| ixpsnval | ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfixp 8833 | . 2 ⊢ X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} | |
| 2 | ralsnsg 4624 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ [𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵)) | |
| 3 | sbcel12 4364 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵) | |
| 4 | csbfv2g 6873 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘⦋𝑋 / 𝑥⦌𝑥)) | |
| 5 | csbvarg 4387 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
| 6 | 5 | fveq2d 6830 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (𝑓‘⦋𝑋 / 𝑥⦌𝑥) = (𝑓‘𝑋)) |
| 7 | 4, 6 | eqtrd 2764 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘𝑋)) |
| 8 | 7 | eleq1d 2813 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
| 9 | 3, 8 | bitrid 283 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
| 10 | 2, 9 | bitrd 279 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
| 11 | 10 | anbi2d 630 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵))) |
| 12 | 11 | abbidv 2795 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| 13 | 1, 12 | eqtrid 2776 | 1 ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 [wsbc 3744 ⦋csb 3853 {csn 4579 Fn wfn 6481 ‘cfv 6486 Xcixp 8831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-dm 5633 df-iota 6442 df-fn 6489 df-fv 6494 df-ixp 8832 |
| This theorem is referenced by: ixpsnbasval 21130 |
| Copyright terms: Public domain | W3C validator |