![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ixpsnval | Structured version Visualization version GIF version |
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.) |
Ref | Expression |
---|---|
ixpsnval | ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfixp 8938 | . 2 ⊢ X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} | |
2 | ralsnsg 4675 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ [𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵)) | |
3 | sbcel12 4417 | . . . . . 6 ⊢ ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵) | |
4 | csbfv2g 6956 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘⦋𝑋 / 𝑥⦌𝑥)) | |
5 | csbvarg 4440 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌𝑥 = 𝑋) | |
6 | 5 | fveq2d 6911 | . . . . . . . 8 ⊢ (𝑋 ∈ 𝑉 → (𝑓‘⦋𝑋 / 𝑥⦌𝑥) = (𝑓‘𝑋)) |
7 | 4, 6 | eqtrd 2775 | . . . . . . 7 ⊢ (𝑋 ∈ 𝑉 → ⦋𝑋 / 𝑥⦌(𝑓‘𝑥) = (𝑓‘𝑋)) |
8 | 7 | eleq1d 2824 | . . . . . 6 ⊢ (𝑋 ∈ 𝑉 → (⦋𝑋 / 𝑥⦌(𝑓‘𝑥) ∈ ⦋𝑋 / 𝑥⦌𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
9 | 3, 8 | bitrid 283 | . . . . 5 ⊢ (𝑋 ∈ 𝑉 → ([𝑋 / 𝑥](𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
10 | 2, 9 | bitrd 279 | . . . 4 ⊢ (𝑋 ∈ 𝑉 → (∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵 ↔ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)) |
11 | 10 | anbi2d 630 | . . 3 ⊢ (𝑋 ∈ 𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵))) |
12 | 11 | abbidv 2806 | . 2 ⊢ (𝑋 ∈ 𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓‘𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
13 | 1, 12 | eqtrid 2787 | 1 ⊢ (𝑋 ∈ 𝑉 → X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓‘𝑋) ∈ ⦋𝑋 / 𝑥⦌𝐵)}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 [wsbc 3791 ⦋csb 3908 {csn 4631 Fn wfn 6558 ‘cfv 6563 Xcixp 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-dm 5699 df-iota 6516 df-fn 6566 df-fv 6571 df-ixp 8937 |
This theorem is referenced by: ixpsnbasval 21233 |
Copyright terms: Public domain | W3C validator |