MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnval Structured version   Visualization version   GIF version

Theorem ixpsnval 8958
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Distinct variable groups:   𝐵,𝑓   𝑓,𝑉   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 8957 . 2 X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)}
2 ralsnsg 4692 . . . . 5 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵[𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵))
3 sbcel12 4434 . . . . . 6 ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵)
4 csbfv2g 6969 . . . . . . . 8 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋 / 𝑥𝑥))
5 csbvarg 4457 . . . . . . . . 9 (𝑋𝑉𝑋 / 𝑥𝑥 = 𝑋)
65fveq2d 6924 . . . . . . . 8 (𝑋𝑉 → (𝑓𝑋 / 𝑥𝑥) = (𝑓𝑋))
74, 6eqtrd 2780 . . . . . . 7 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋))
87eleq1d 2829 . . . . . 6 (𝑋𝑉 → (𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
93, 8bitrid 283 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
102, 9bitrd 279 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
1110anbi2d 629 . . 3 (𝑋𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)))
1211abbidv 2811 . 2 (𝑋𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
131, 12eqtrid 2792 1 (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {cab 2717  wral 3067  [wsbc 3804  csb 3921  {csn 4648   Fn wfn 6568  cfv 6573  Xcixp 8955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-dm 5710  df-iota 6525  df-fn 6576  df-fv 6581  df-ixp 8956
This theorem is referenced by:  ixpsnbasval  21238
  Copyright terms: Public domain W3C validator