MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnval Structured version   Visualization version   GIF version

Theorem ixpsnval 8601
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Distinct variable groups:   𝐵,𝑓   𝑓,𝑉   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 8600 . 2 X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)}
2 ralsnsg 4598 . . . . 5 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵[𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵))
3 sbcel12 4337 . . . . . 6 ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵)
4 csbfv2g 6779 . . . . . . . 8 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋 / 𝑥𝑥))
5 csbvarg 4360 . . . . . . . . 9 (𝑋𝑉𝑋 / 𝑥𝑥 = 𝑋)
65fveq2d 6739 . . . . . . . 8 (𝑋𝑉 → (𝑓𝑋 / 𝑥𝑥) = (𝑓𝑋))
74, 6eqtrd 2778 . . . . . . 7 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋))
87eleq1d 2823 . . . . . 6 (𝑋𝑉 → (𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
93, 8syl5bb 286 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
102, 9bitrd 282 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
1110anbi2d 632 . . 3 (𝑋𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)))
1211abbidv 2808 . 2 (𝑋𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
131, 12eqtrid 2790 1 (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2111  {cab 2715  wral 3062  [wsbc 3708  csb 3825  {csn 4555   Fn wfn 6392  cfv 6397  Xcixp 8598
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-sep 5206  ax-nul 5213  ax-pr 5336
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-ral 3067  df-rex 3068  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-nul 4252  df-if 4454  df-sn 4556  df-pr 4558  df-op 4562  df-uni 4834  df-br 5068  df-dm 5575  df-iota 6355  df-fn 6400  df-fv 6405  df-ixp 8599
This theorem is referenced by:  ixpsnbasval  20271
  Copyright terms: Public domain W3C validator