MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpsnval Structured version   Visualization version   GIF version

Theorem ixpsnval 8873
Description: The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnval (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Distinct variable groups:   𝐵,𝑓   𝑓,𝑉   𝑓,𝑋,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥)

Proof of Theorem ixpsnval
StepHypRef Expression
1 dfixp 8872 . 2 X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)}
2 ralsnsg 4634 . . . . 5 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵[𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵))
3 sbcel12 4374 . . . . . 6 ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵)
4 csbfv2g 6907 . . . . . . . 8 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋 / 𝑥𝑥))
5 csbvarg 4397 . . . . . . . . 9 (𝑋𝑉𝑋 / 𝑥𝑥 = 𝑋)
65fveq2d 6862 . . . . . . . 8 (𝑋𝑉 → (𝑓𝑋 / 𝑥𝑥) = (𝑓𝑋))
74, 6eqtrd 2764 . . . . . . 7 (𝑋𝑉𝑋 / 𝑥(𝑓𝑥) = (𝑓𝑋))
87eleq1d 2813 . . . . . 6 (𝑋𝑉 → (𝑋 / 𝑥(𝑓𝑥) ∈ 𝑋 / 𝑥𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
93, 8bitrid 283 . . . . 5 (𝑋𝑉 → ([𝑋 / 𝑥](𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
102, 9bitrd 279 . . . 4 (𝑋𝑉 → (∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵))
1110anbi2d 630 . . 3 (𝑋𝑉 → ((𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵) ↔ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)))
1211abbidv 2795 . 2 (𝑋𝑉 → {𝑓 ∣ (𝑓 Fn {𝑋} ∧ ∀𝑥 ∈ {𝑋} (𝑓𝑥) ∈ 𝐵)} = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
131, 12eqtrid 2776 1 (𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  [wsbc 3753  csb 3862  {csn 4589   Fn wfn 6506  cfv 6511  Xcixp 8870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-dm 5648  df-iota 6464  df-fn 6514  df-fv 6519  df-ixp 8871
This theorem is referenced by:  ixpsnbasval  21115
  Copyright terms: Public domain W3C validator