| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | fneq2 6592 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6494 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6502 |
| This theorem is referenced by: fnunop 6616 fnprb 7164 fntpb 7165 fnsuppeq0 8148 tpos0 8212 dfixp 8849 ordtypelem4 9450 ser0f 13996 0csh0 14734 s3fn 14853 prodf1f 15834 efcvgfsum 16028 prmrec 16869 fnpr2o 17496 0ssc 17775 0subcat 17776 mulgfvi 18981 ovolunlem1 25374 volsup 25433 mtest 26289 mtestbdd 26290 pserulm 26307 pserdvlem2 26314 emcllem5 26886 lgamgulm2 26922 lgamcvglem 26926 gamcvg2lem 26945 tglnfn 28450 crctcshlem4 29723 fsuppcurry1 32621 fsuppcurry2 32622 resf1o 32626 s2rnOLD 32838 s3rnOLD 32840 cycpmfvlem 33042 cycpmfv3 33045 esumfsup 34033 esumpcvgval 34041 esumcvg 34049 esumsup 34052 bnj149 34838 bnj1312 35021 faclimlem1 35703 fullfunfnv 35907 ixpeq1i 36161 cbvixpvw2 36206 knoppcnlem8 36461 knoppcnlem11 36464 mblfinlem2 37625 ovoliunnfl 37629 voliunnfl 37631 subsaliuncl 46329 fcores 47041 isubgr3stgrlem7 47944 isofval2 48994 0funcALT 49050 |
| Copyright terms: Public domain | W3C validator |