Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6509 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Fn wfn 6413 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 |
This theorem is referenced by: fnunop 6531 fnprb 7066 fntpb 7067 fnsuppeq0 7979 tpos0 8043 wfrlem5OLD 8115 dfixp 8645 ordtypelem4 9210 ser0f 13704 0csh0 14434 s3fn 14552 prodf1f 15532 efcvgfsum 15723 prmrec 16551 fnpr2o 17185 0ssc 17468 0subcat 17469 mulgfvi 18621 ovolunlem1 24566 volsup 24625 mtest 25468 mtestbdd 25469 pserulm 25486 pserdvlem2 25492 emcllem5 26054 lgamgulm2 26090 lgamcvglem 26094 gamcvg2lem 26113 tglnfn 26812 crctcshlem4 28086 fsuppcurry1 30962 fsuppcurry2 30963 resf1o 30967 s2rn 31120 s3rn 31122 cycpmfvlem 31281 cycpmfv3 31284 esumfsup 31938 esumpcvgval 31946 esumcvg 31954 esumsup 31957 bnj149 32755 bnj1312 32938 faclimlem1 33615 fullfunfnv 34175 knoppcnlem8 34607 knoppcnlem11 34610 mblfinlem2 35742 ovoliunnfl 35746 voliunnfl 35748 subsaliuncl 43787 fcores 44448 |
Copyright terms: Public domain | W3C validator |