Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6525 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-fn 6436 |
This theorem is referenced by: fnunop 6547 fnprb 7084 fntpb 7085 fnsuppeq0 8008 tpos0 8072 wfrlem5OLD 8144 dfixp 8687 ordtypelem4 9280 ser0f 13776 0csh0 14506 s3fn 14624 prodf1f 15604 efcvgfsum 15795 prmrec 16623 fnpr2o 17268 0ssc 17552 0subcat 17553 mulgfvi 18706 ovolunlem1 24661 volsup 24720 mtest 25563 mtestbdd 25564 pserulm 25581 pserdvlem2 25587 emcllem5 26149 lgamgulm2 26185 lgamcvglem 26189 gamcvg2lem 26208 tglnfn 26908 crctcshlem4 28185 fsuppcurry1 31060 fsuppcurry2 31061 resf1o 31065 s2rn 31218 s3rn 31220 cycpmfvlem 31379 cycpmfv3 31382 esumfsup 32038 esumpcvgval 32046 esumcvg 32054 esumsup 32057 bnj149 32855 bnj1312 33038 faclimlem1 33709 fullfunfnv 34248 knoppcnlem8 34680 knoppcnlem11 34683 mblfinlem2 35815 ovoliunnfl 35819 voliunnfl 35821 subsaliuncl 43897 fcores 44561 |
Copyright terms: Public domain | W3C validator |