![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6671 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Fn wfn 6568 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 |
This theorem is referenced by: fnunop 6695 fnprb 7245 fntpb 7246 fnsuppeq0 8233 tpos0 8297 wfrlem5OLD 8369 dfixp 8957 ordtypelem4 9590 ser0f 14106 0csh0 14841 s3fn 14960 prodf1f 15940 efcvgfsum 16134 prmrec 16969 fnpr2o 17617 0ssc 17901 0subcat 17902 mulgfvi 19113 ovolunlem1 25551 volsup 25610 mtest 26465 mtestbdd 26466 pserulm 26483 pserdvlem2 26490 emcllem5 27061 lgamgulm2 27097 lgamcvglem 27101 gamcvg2lem 27120 tglnfn 28573 crctcshlem4 29853 fsuppcurry1 32739 fsuppcurry2 32740 resf1o 32744 s2rnOLD 32910 s3rnOLD 32912 cycpmfvlem 33105 cycpmfv3 33108 esumfsup 34034 esumpcvgval 34042 esumcvg 34050 esumsup 34053 bnj149 34851 bnj1312 35034 faclimlem1 35705 fullfunfnv 35910 ixpeq1i 36164 cbvixpvw2 36211 knoppcnlem8 36466 knoppcnlem11 36469 mblfinlem2 37618 ovoliunnfl 37622 voliunnfl 37624 subsaliuncl 46279 fcores 46982 |
Copyright terms: Public domain | W3C validator |