![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6322 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1525 Fn wfn 6227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-9 2093 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1766 df-cleq 2790 df-fn 6235 |
This theorem is referenced by: fnunsn 6341 fnprb 6844 fntpb 6845 fnsuppeq0 7716 tpos0 7780 wfrlem5 7818 dfixp 8319 ordtypelem4 8838 ser0f 13277 0csh0 13995 s3fn 14113 prodf1f 15085 efcvgfsum 15276 prmrec 16091 fnpr2o 16663 0ssc 16940 0subcat 16941 mulgfvi 17991 ovolunlem1 23785 volsup 23844 mtest 24679 mtestbdd 24680 pserulm 24697 pserdvlem2 24703 emcllem5 25263 lgamgulm2 25299 lgamcvglem 25303 gamcvg2lem 25322 tglnfn 26019 crctcshlem4 27284 fsuppcurry1 30145 fsuppcurry2 30146 resf1o 30150 s2rn 30296 s3rn 30298 cycpmfvlem 30397 cycpmfv3 30400 esumfsup 30942 esumpcvgval 30950 esumcvg 30958 esumsup 30961 bnj149 31759 bnj1312 31940 faclimlem1 32585 fullfunfnv 33018 knoppcnlem8 33450 knoppcnlem11 33453 mblfinlem2 34482 ovoliunnfl 34486 voliunnfl 34488 subsaliuncl 42205 |
Copyright terms: Public domain | W3C validator |