| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | fneq2 6581 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Fn wfn 6484 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-fn 6492 |
| This theorem is referenced by: fnunop 6605 fnprb 7151 fntpb 7152 fnsuppeq0 8131 tpos0 8195 dfixp 8833 ordtypelem4 9418 ser0f 13969 0csh0 14707 s3fn 14825 prodf1f 15806 efcvgfsum 16000 prmrec 16841 fnpr2o 17469 0ssc 17752 0subcat 17753 mulgfvi 18994 ovolunlem1 25445 volsup 25504 mtest 26360 mtestbdd 26361 pserulm 26378 pserdvlem2 26385 emcllem5 26957 lgamgulm2 26993 lgamcvglem 26997 gamcvg2lem 27016 tglnfn 28545 crctcshlem4 29819 fsuppcurry1 32731 fsuppcurry2 32732 resf1o 32737 s2rnOLD 32954 s3rnOLD 32956 cycpmfvlem 33122 cycpmfv3 33125 esumfsup 34155 esumpcvgval 34163 esumcvg 34171 esumsup 34174 bnj149 34959 bnj1312 35142 faclimlem1 35859 fullfunfnv 36062 ixpeq1i 36316 cbvixpvw2 36361 knoppcnlem8 36616 knoppcnlem11 36619 mblfinlem2 37771 ovoliunnfl 37775 voliunnfl 37777 subsaliuncl 46518 fcores 47229 isubgr3stgrlem7 48134 isofval2 49193 0funcALT 49249 |
| Copyright terms: Public domain | W3C validator |