| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | fneq2 6610 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 |
| This theorem is referenced by: fnunop 6634 fnprb 7182 fntpb 7183 fnsuppeq0 8171 tpos0 8235 dfixp 8872 ordtypelem4 9474 ser0f 14020 0csh0 14758 s3fn 14877 prodf1f 15858 efcvgfsum 16052 prmrec 16893 fnpr2o 17520 0ssc 17799 0subcat 17800 mulgfvi 19005 ovolunlem1 25398 volsup 25457 mtest 26313 mtestbdd 26314 pserulm 26331 pserdvlem2 26338 emcllem5 26910 lgamgulm2 26946 lgamcvglem 26950 gamcvg2lem 26969 tglnfn 28474 crctcshlem4 29750 fsuppcurry1 32648 fsuppcurry2 32649 resf1o 32653 s2rnOLD 32865 s3rnOLD 32867 cycpmfvlem 33069 cycpmfv3 33072 esumfsup 34060 esumpcvgval 34068 esumcvg 34076 esumsup 34079 bnj149 34865 bnj1312 35048 faclimlem1 35730 fullfunfnv 35934 ixpeq1i 36188 cbvixpvw2 36233 knoppcnlem8 36488 knoppcnlem11 36491 mblfinlem2 37652 ovoliunnfl 37656 voliunnfl 37658 subsaliuncl 46356 fcores 47065 isubgr3stgrlem7 47968 isofval2 49018 0funcALT 49074 |
| Copyright terms: Public domain | W3C validator |