![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6661 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 Fn wfn 6558 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 df-fn 6566 |
This theorem is referenced by: fnunop 6685 fnprb 7228 fntpb 7229 fnsuppeq0 8216 tpos0 8280 wfrlem5OLD 8352 dfixp 8938 ordtypelem4 9559 ser0f 14093 0csh0 14828 s3fn 14947 prodf1f 15925 efcvgfsum 16119 prmrec 16956 fnpr2o 17604 0ssc 17888 0subcat 17889 mulgfvi 19104 ovolunlem1 25546 volsup 25605 mtest 26462 mtestbdd 26463 pserulm 26480 pserdvlem2 26487 emcllem5 27058 lgamgulm2 27094 lgamcvglem 27098 gamcvg2lem 27117 tglnfn 28570 crctcshlem4 29850 fsuppcurry1 32743 fsuppcurry2 32744 resf1o 32748 s2rnOLD 32913 s3rnOLD 32915 cycpmfvlem 33115 cycpmfv3 33118 esumfsup 34051 esumpcvgval 34059 esumcvg 34067 esumsup 34070 bnj149 34868 bnj1312 35051 faclimlem1 35723 fullfunfnv 35928 ixpeq1i 36182 cbvixpvw2 36228 knoppcnlem8 36483 knoppcnlem11 36486 mblfinlem2 37645 ovoliunnfl 37649 voliunnfl 37651 subsaliuncl 46314 fcores 47017 isubgr3stgrlem7 47875 |
Copyright terms: Public domain | W3C validator |