Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version |
Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
Ref | Expression |
---|---|
fneq2i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | fneq2 6426 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 Fn wfn 6330 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 df-fn 6338 |
This theorem is referenced by: fnunop 6447 fnprb 6962 fntpb 6963 fnsuppeq0 7866 tpos0 7932 wfrlem5 7969 dfixp 8481 ordtypelem4 9018 ser0f 13473 0csh0 14202 s3fn 14320 prodf1f 15296 efcvgfsum 15487 prmrec 16313 fnpr2o 16888 0ssc 17166 0subcat 17167 mulgfvi 18297 ovolunlem1 24197 volsup 24256 mtest 25098 mtestbdd 25099 pserulm 25116 pserdvlem2 25122 emcllem5 25684 lgamgulm2 25720 lgamcvglem 25724 gamcvg2lem 25743 tglnfn 26440 crctcshlem4 27705 fsuppcurry1 30584 fsuppcurry2 30585 resf1o 30589 s2rn 30742 s3rn 30744 cycpmfvlem 30905 cycpmfv3 30908 esumfsup 31557 esumpcvgval 31565 esumcvg 31573 esumsup 31576 bnj149 32375 bnj1312 32558 faclimlem1 33224 fullfunfnv 33797 knoppcnlem8 34229 knoppcnlem11 34232 mblfinlem2 35375 ovoliunnfl 35379 voliunnfl 35381 subsaliuncl 43364 |
Copyright terms: Public domain | W3C validator |