| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | fneq2 6635 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 df-fn 6539 |
| This theorem is referenced by: fnunop 6659 fnprb 7205 fntpb 7206 fnsuppeq0 8196 tpos0 8260 wfrlem5OLD 8332 dfixp 8918 ordtypelem4 9540 ser0f 14078 0csh0 14816 s3fn 14935 prodf1f 15913 efcvgfsum 16107 prmrec 16947 fnpr2o 17576 0ssc 17855 0subcat 17856 mulgfvi 19061 ovolunlem1 25455 volsup 25514 mtest 26370 mtestbdd 26371 pserulm 26388 pserdvlem2 26395 emcllem5 26967 lgamgulm2 27003 lgamcvglem 27007 gamcvg2lem 27026 tglnfn 28531 crctcshlem4 29807 fsuppcurry1 32707 fsuppcurry2 32708 resf1o 32712 s2rnOLD 32924 s3rnOLD 32926 cycpmfvlem 33128 cycpmfv3 33131 esumfsup 34106 esumpcvgval 34114 esumcvg 34122 esumsup 34125 bnj149 34911 bnj1312 35094 faclimlem1 35765 fullfunfnv 35969 ixpeq1i 36223 cbvixpvw2 36268 knoppcnlem8 36523 knoppcnlem11 36526 mblfinlem2 37687 ovoliunnfl 37691 voliunnfl 37693 subsaliuncl 46354 fcores 47063 isubgr3stgrlem7 47951 isofval2 48969 0funcALT 49020 |
| Copyright terms: Public domain | W3C validator |