| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | fneq2 6568 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 Fn wfn 6471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6479 |
| This theorem is referenced by: fnunop 6592 fnprb 7137 fntpb 7138 fnsuppeq0 8117 tpos0 8181 dfixp 8818 ordtypelem4 9402 ser0f 13957 0csh0 14695 s3fn 14813 prodf1f 15794 efcvgfsum 15988 prmrec 16829 fnpr2o 17456 0ssc 17739 0subcat 17740 mulgfvi 18981 ovolunlem1 25420 volsup 25479 mtest 26335 mtestbdd 26336 pserulm 26353 pserdvlem2 26360 emcllem5 26932 lgamgulm2 26968 lgamcvglem 26972 gamcvg2lem 26991 tglnfn 28520 crctcshlem4 29793 fsuppcurry1 32699 fsuppcurry2 32700 resf1o 32705 s2rnOLD 32917 s3rnOLD 32919 cycpmfvlem 33073 cycpmfv3 33076 esumfsup 34075 esumpcvgval 34083 esumcvg 34091 esumsup 34094 bnj149 34879 bnj1312 35062 faclimlem1 35779 fullfunfnv 35980 ixpeq1i 36234 cbvixpvw2 36279 knoppcnlem8 36534 knoppcnlem11 36537 mblfinlem2 37698 ovoliunnfl 37702 voliunnfl 37704 subsaliuncl 46396 fcores 47098 isubgr3stgrlem7 48003 isofval2 49064 0funcALT 49120 |
| Copyright terms: Public domain | W3C validator |