| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fneq2i | Structured version Visualization version GIF version | ||
| Description: Equality inference for function predicate with domain. (Contributed by NM, 4-Sep-2011.) |
| Ref | Expression |
|---|---|
| fneq2i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| fneq2i | ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | fneq2 6574 | . 2 ⊢ (𝐴 = 𝐵 → (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐹 Fn 𝐴 ↔ 𝐹 Fn 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 Fn wfn 6477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6485 |
| This theorem is referenced by: fnunop 6598 fnprb 7144 fntpb 7145 fnsuppeq0 8125 tpos0 8189 dfixp 8826 ordtypelem4 9413 ser0f 13962 0csh0 14699 s3fn 14818 prodf1f 15799 efcvgfsum 15993 prmrec 16834 fnpr2o 17461 0ssc 17744 0subcat 17745 mulgfvi 18952 ovolunlem1 25396 volsup 25455 mtest 26311 mtestbdd 26312 pserulm 26329 pserdvlem2 26336 emcllem5 26908 lgamgulm2 26944 lgamcvglem 26948 gamcvg2lem 26967 tglnfn 28492 crctcshlem4 29765 fsuppcurry1 32668 fsuppcurry2 32669 resf1o 32673 s2rnOLD 32885 s3rnOLD 32887 cycpmfvlem 33054 cycpmfv3 33057 esumfsup 34037 esumpcvgval 34045 esumcvg 34053 esumsup 34056 bnj149 34842 bnj1312 35025 faclimlem1 35716 fullfunfnv 35920 ixpeq1i 36174 cbvixpvw2 36219 knoppcnlem8 36474 knoppcnlem11 36477 mblfinlem2 37638 ovoliunnfl 37642 voliunnfl 37644 subsaliuncl 46339 fcores 47051 isubgr3stgrlem7 47956 isofval2 49017 0funcALT 49073 |
| Copyright terms: Public domain | W3C validator |