| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| ixpeq1 | ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 6592 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Fn 𝐴 ↔ 𝑓 Fn 𝐵)) | |
| 2 | raleq 3293 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶))) |
| 4 | 3 | abbidv 2795 | . 2 ⊢ (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)}) |
| 5 | dfixp 8849 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
| 6 | dfixp 8849 | . 2 ⊢ X𝑥 ∈ 𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2789 | 1 ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 Fn wfn 6494 ‘cfv 6499 Xcixp 8847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-fn 6502 df-ixp 8848 |
| This theorem is referenced by: ixpeq1d 8859 finixpnum 37572 ioorrnopn 46276 ioorrnopnxr 46278 ovnval 46512 hoicvr 46519 hoidmv1le 46565 hoidmvle 46571 ovnhoi 46574 hspval 46580 ovnlecvr2 46581 hoiqssbl 46596 vonhoire 46643 iunhoiioo 46647 vonioo 46653 vonicc 46656 |
| Copyright terms: Public domain | W3C validator |