MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1 Structured version   Visualization version   GIF version

Theorem ixpeq1 8930
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq1 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ixpeq1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq2 6640 . . . 4 (𝐴 = 𝐵 → (𝑓 Fn 𝐴𝑓 Fn 𝐵))
2 raleq 3306 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶))
31, 2anbi12d 632 . . 3 (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)))
43abbidv 2800 . 2 (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)})
5 dfixp 8921 . 2 X𝑥𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)}
6 dfixp 8921 . 2 X𝑥𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)}
74, 5, 63eqtr4g 2794 1 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  {cab 2712  wral 3050   Fn wfn 6536  cfv 6541  Xcixp 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-fn 6544  df-ixp 8920
This theorem is referenced by:  ixpeq1d  8931  finixpnum  37587  ioorrnopn  46292  ioorrnopnxr  46294  ovnval  46528  hoicvr  46535  hoidmv1le  46581  hoidmvle  46587  ovnhoi  46590  hspval  46596  ovnlecvr2  46597  hoiqssbl  46612  vonhoire  46659  iunhoiioo  46663  vonioo  46669  vonicc  46672
  Copyright terms: Public domain W3C validator