MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpeq1 Structured version   Visualization version   GIF version

Theorem ixpeq1 8927
Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
Assertion
Ref Expression
ixpeq1 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem ixpeq1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq2 6635 . . . 4 (𝐴 = 𝐵 → (𝑓 Fn 𝐴𝑓 Fn 𝐵))
2 raleq 3306 . . . 4 (𝐴 = 𝐵 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶 ↔ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶))
31, 2anbi12d 632 . . 3 (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)))
43abbidv 2802 . 2 (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)})
5 dfixp 8918 . 2 X𝑥𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐶)}
6 dfixp 8918 . 2 X𝑥𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥𝐵 (𝑓𝑥) ∈ 𝐶)}
74, 5, 63eqtr4g 2796 1 (𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2714  wral 3052   Fn wfn 6531  cfv 6536  Xcixp 8916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-fn 6539  df-ixp 8917
This theorem is referenced by:  ixpeq1d  8928  finixpnum  37634  ioorrnopn  46301  ioorrnopnxr  46303  ovnval  46537  hoicvr  46544  hoidmv1le  46590  hoidmvle  46596  ovnhoi  46599  hspval  46605  ovnlecvr2  46606  hoiqssbl  46621  vonhoire  46668  iunhoiioo  46672  vonioo  46678  vonicc  46681
  Copyright terms: Public domain W3C validator