| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ixpeq1 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| ixpeq1 | ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fneq2 6635 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑓 Fn 𝐴 ↔ 𝑓 Fn 𝐵)) | |
| 2 | raleq 3306 | . . . 4 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶 ↔ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)) | |
| 3 | 1, 2 | anbi12d 632 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶) ↔ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶))) |
| 4 | 3 | abbidv 2802 | . 2 ⊢ (𝐴 = 𝐵 → {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)}) |
| 5 | dfixp 8918 | . 2 ⊢ X𝑥 ∈ 𝐴 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐶)} | |
| 6 | dfixp 8918 | . 2 ⊢ X𝑥 ∈ 𝐵 𝐶 = {𝑓 ∣ (𝑓 Fn 𝐵 ∧ ∀𝑥 ∈ 𝐵 (𝑓‘𝑥) ∈ 𝐶)} | |
| 7 | 4, 5, 6 | 3eqtr4g 2796 | 1 ⊢ (𝐴 = 𝐵 → X𝑥 ∈ 𝐴 𝐶 = X𝑥 ∈ 𝐵 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∀wral 3052 Fn wfn 6531 ‘cfv 6536 Xcixp 8916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-fn 6539 df-ixp 8917 |
| This theorem is referenced by: ixpeq1d 8928 finixpnum 37634 ioorrnopn 46301 ioorrnopnxr 46303 ovnval 46537 hoicvr 46544 hoidmv1le 46590 hoidmvle 46596 ovnhoi 46599 hspval 46605 ovnlecvr2 46606 hoiqssbl 46621 vonhoire 46668 iunhoiioo 46672 vonioo 46678 vonicc 46681 |
| Copyright terms: Public domain | W3C validator |