Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elixp2 | Structured version Visualization version GIF version |
Description: Membership in an infinite Cartesian product. See df-ixp 8644 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp2 | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 6508 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
2 | fveq1 6755 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
3 | 2 | eleq1d 2823 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
4 | 3 | ralbidv 3120 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | 1, 4 | anbi12d 630 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
6 | dfixp 8645 | . . . 4 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
7 | 5, 6 | elab2g 3604 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
8 | 7 | pm5.32i 574 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
9 | elex 3440 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 ∈ V) | |
10 | 9 | pm4.71ri 560 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵)) |
11 | 3anass 1093 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
12 | 8, 10, 11 | 3bitr4i 302 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 ∀wral 3063 Vcvv 3422 Fn wfn 6413 ‘cfv 6418 Xcixp 8643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fn 6421 df-fv 6426 df-ixp 8644 |
This theorem is referenced by: fvixp 8648 ixpfn 8649 elixp 8650 ixpf 8666 resixp 8679 undifixp 8680 mptelixpg 8681 prdsbasprj 17100 xpsfrnel 17190 xpscf 17193 isssc 17449 isfuncd 17496 funcres2b 17528 dprdw 19528 ptrecube 35704 kelac1 40804 elixpconstg 42528 fvixp2 42627 rrxsnicc 43731 ioorrnopnxrlem 43737 hoiqssbllem1 44050 iinhoiicclem 44101 iunhoiioolem 44103 funcf2lem 46187 |
Copyright terms: Public domain | W3C validator |