![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elixp2 | Structured version Visualization version GIF version |
Description: Membership in an infinite Cartesian product. See df-ixp 8832 for discussion of the notation. (Contributed by NM, 28-Sep-2006.) |
Ref | Expression |
---|---|
elixp2 | ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fneq1 6590 | . . . . 5 ⊢ (𝑓 = 𝐹 → (𝑓 Fn 𝐴 ↔ 𝐹 Fn 𝐴)) | |
2 | fveq1 6838 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑥) = (𝐹‘𝑥)) | |
3 | 2 | eleq1d 2822 | . . . . . 6 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑥) ∈ 𝐵 ↔ (𝐹‘𝑥) ∈ 𝐵)) |
4 | 3 | ralbidv 3172 | . . . . 5 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵 ↔ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
5 | 1, 4 | anbi12d 631 | . . . 4 ⊢ (𝑓 = 𝐹 → ((𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
6 | dfixp 8833 | . . . 4 ⊢ X𝑥 ∈ 𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)} | |
7 | 5, 6 | elab2g 3630 | . . 3 ⊢ (𝐹 ∈ V → (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
8 | 7 | pm5.32i 575 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) |
9 | elex 3461 | . . 3 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 → 𝐹 ∈ V) | |
10 | 9 | pm4.71ri 561 | . 2 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 ∈ X𝑥 ∈ 𝐴 𝐵)) |
11 | 3anass 1095 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵))) | |
12 | 8, 10, 11 | 3bitr4i 302 | 1 ⊢ (𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝐹‘𝑥) ∈ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3062 Vcvv 3443 Fn wfn 6488 ‘cfv 6493 Xcixp 8831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3063 df-rab 3406 df-v 3445 df-dif 3911 df-un 3913 df-in 3915 df-ss 3925 df-nul 4281 df-if 4485 df-sn 4585 df-pr 4587 df-op 4591 df-uni 4864 df-br 5104 df-opab 5166 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6445 df-fun 6495 df-fn 6496 df-fv 6501 df-ixp 8832 |
This theorem is referenced by: fvixp 8836 ixpfn 8837 elixp 8838 ixpf 8854 resixp 8867 undifixp 8868 mptelixpg 8869 prdsbasprj 17346 xpsfrnel 17436 xpscf 17439 isssc 17695 isfuncd 17743 funcres2b 17775 dprdw 19780 ptrecube 36045 kelac1 41328 elixpconstg 43241 fvixp2 43355 rrxsnicc 44473 ioorrnopnxrlem 44479 hoiqssbllem1 44795 iinhoiicclem 44846 iunhoiioolem 44848 funcf2lem 46970 |
Copyright terms: Public domain | W3C validator |