MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elixp2 Structured version   Visualization version   GIF version

Theorem elixp2 8939
Description: Membership in an infinite Cartesian product. See df-ixp 8936 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
Assertion
Ref Expression
elixp2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐹
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem elixp2
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 fneq1 6659 . . . . 5 (𝑓 = 𝐹 → (𝑓 Fn 𝐴𝐹 Fn 𝐴))
2 fveq1 6905 . . . . . . 7 (𝑓 = 𝐹 → (𝑓𝑥) = (𝐹𝑥))
32eleq1d 2823 . . . . . 6 (𝑓 = 𝐹 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝐹𝑥) ∈ 𝐵))
43ralbidv 3175 . . . . 5 (𝑓 = 𝐹 → (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
51, 4anbi12d 632 . . . 4 (𝑓 = 𝐹 → ((𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵) ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
6 dfixp 8937 . . . 4 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
75, 6elab2g 3682 . . 3 (𝐹 ∈ V → (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
87pm5.32i 574 . 2 ((𝐹 ∈ V ∧ 𝐹X𝑥𝐴 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
9 elex 3498 . . 3 (𝐹X𝑥𝐴 𝐵𝐹 ∈ V)
109pm4.71ri 560 . 2 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹X𝑥𝐴 𝐵))
11 3anass 1094 . 2 ((𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵) ↔ (𝐹 ∈ V ∧ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵)))
128, 10, 113bitr4i 303 1 (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  wral 3058  Vcvv 3477   Fn wfn 6557  cfv 6562  Xcixp 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-ral 3059  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fn 6565  df-fv 6570  df-ixp 8936
This theorem is referenced by:  fvixp  8940  ixpfn  8941  elixp  8942  ixpf  8958  resixp  8971  undifixp  8972  mptelixpg  8973  prdsbasprj  17518  xpsfrnel  17608  xpscf  17611  isssc  17867  isfuncd  17915  funcres2b  17947  dprdw  20044  ptrecube  37606  kelac1  43051  elixpconstg  45028  fvixp2  45141  rrxsnicc  46255  ioorrnopnxrlem  46261  hoiqssbllem1  46577  iinhoiicclem  46628  iunhoiioolem  46630  funcf2lem  48810
  Copyright terms: Public domain W3C validator