![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dftp2 | Structured version Visualization version GIF version |
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
dftp2 | ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3452 | . . 3 ⊢ 𝑥 ∈ V | |
2 | 1 | eltp 4654 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
3 | 2 | abbi2i 2874 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1087 = wceq 1542 {cab 2714 {ctp 4595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3450 df-un 3920 df-sn 4592 df-pr 4594 df-tp 4596 |
This theorem is referenced by: tprot 4715 en3lplem2 9556 abtp 41756 tpid3gVD 43198 en3lplem2VD 43200 |
Copyright terms: Public domain | W3C validator |