| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dftp2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| dftp2 | ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3438 | . . 3 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eltp 4640 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
| 3 | 2 | eqabi 2864 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1541 {cab 2708 {ctp 4578 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-un 3905 df-sn 4575 df-pr 4577 df-tp 4579 |
| This theorem is referenced by: tprot 4700 en3lplem2 9498 rabsstp 32472 abtp 43422 tpid3gVD 44853 en3lplem2VD 44855 |
| Copyright terms: Public domain | W3C validator |