Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dftp2 | Structured version Visualization version GIF version |
Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of [TakeutiZaring] p. 16. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
dftp2 | ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3412 | . . 3 ⊢ 𝑥 ∈ V | |
2 | 1 | eltp 4604 | . 2 ⊢ (𝑥 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)) |
3 | 2 | abbi2i 2876 | 1 ⊢ {𝐴, 𝐵, 𝐶} = {𝑥 ∣ (𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ∨ 𝑥 = 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1088 = wceq 1543 {cab 2714 {ctp 4545 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-tru 1546 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3410 df-un 3871 df-sn 4542 df-pr 4544 df-tp 4546 |
This theorem is referenced by: tprot 4665 en3lplem2 9228 tpid3gVD 42135 en3lplem2VD 42137 |
Copyright terms: Public domain | W3C validator |