![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version |
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltp.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eltpg 4709 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 Vcvv 3488 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: dftp2 4714 tpid1 4793 tpid2 4795 brtp 5542 tpres 7238 fntpb 7246 bpoly3 16106 cnfldfun 21401 cnfldfunOLD 21414 gausslemma2dlem0i 27426 2lgsoddprm 27478 sltsolem1 27738 nb3grprlem1 29415 frgr3vlem1 30305 frgr3vlem2 30306 prodtp 32831 s3f1 32913 hgt750lemb 34633 fmtno4prmfac 47446 usgrexmpl2nb0 47846 usgrexmpl2nb3 47849 usgrexmpl2trifr 47852 |
Copyright terms: Public domain | W3C validator |