| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltp.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eltpg 4639 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {ctp 4580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3907 df-sn 4577 df-pr 4579 df-tp 4581 |
| This theorem is referenced by: dftp2 4644 tpid1 4721 tpid2 4723 brtp 5463 tpres 7135 fntpb 7143 bpoly3 15962 cnfldfun 21303 cnfldfunOLD 21316 gausslemma2dlem0i 27300 2lgsoddprm 27352 sltsolem1 27612 nb3grprlem1 29356 frgr3vlem1 30248 frgr3vlem2 30249 prodtp 32805 s3f1 32923 hgt750lemb 34664 fmtno4prmfac 47602 usgrexmpl2nb0 48061 usgrexmpl2nb3 48064 usgrexmpl2trifr 48067 gpgnbgrvtx0 48104 gpgnbgrvtx1 48105 |
| Copyright terms: Public domain | W3C validator |