![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version |
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltp.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eltpg 4691 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ w3o 1085 = wceq 1537 ∈ wcel 2106 Vcvv 3478 {ctp 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-un 3968 df-sn 4632 df-pr 4634 df-tp 4636 |
This theorem is referenced by: dftp2 4696 tpid1 4773 tpid2 4775 brtp 5533 tpres 7221 fntpb 7229 bpoly3 16091 cnfldfun 21396 cnfldfunOLD 21409 gausslemma2dlem0i 27423 2lgsoddprm 27475 sltsolem1 27735 nb3grprlem1 29412 frgr3vlem1 30302 frgr3vlem2 30303 prodtp 32834 s3f1 32916 hgt750lemb 34650 fmtno4prmfac 47497 usgrexmpl2nb0 47926 usgrexmpl2nb3 47929 usgrexmpl2trifr 47932 gpgnbgrvtx0 47965 gpgnbgrvtx1 47966 |
Copyright terms: Public domain | W3C validator |