| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltp.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eltpg 4640 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3438 {ctp 4583 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3440 df-un 3910 df-sn 4580 df-pr 4582 df-tp 4584 |
| This theorem is referenced by: dftp2 4645 tpid1 4722 tpid2 4724 brtp 5470 tpres 7141 fntpb 7149 bpoly3 15983 cnfldfun 21293 cnfldfunOLD 21306 gausslemma2dlem0i 27291 2lgsoddprm 27343 sltsolem1 27603 nb3grprlem1 29343 frgr3vlem1 30235 frgr3vlem2 30236 prodtp 32785 s3f1 32901 hgt750lemb 34623 fmtno4prmfac 47557 usgrexmpl2nb0 48016 usgrexmpl2nb3 48019 usgrexmpl2trifr 48022 gpgnbgrvtx0 48059 gpgnbgrvtx1 48060 |
| Copyright terms: Public domain | W3C validator |