| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltp.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eltpg 4662 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ w3o 1085 = wceq 1540 ∈ wcel 2108 Vcvv 3459 {ctp 4605 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-pr 4604 df-tp 4606 |
| This theorem is referenced by: dftp2 4667 tpid1 4744 tpid2 4746 brtp 5498 tpres 7193 fntpb 7201 bpoly3 16074 cnfldfun 21329 cnfldfunOLD 21342 gausslemma2dlem0i 27327 2lgsoddprm 27379 sltsolem1 27639 nb3grprlem1 29359 frgr3vlem1 30254 frgr3vlem2 30255 prodtp 32806 s3f1 32922 hgt750lemb 34688 fmtno4prmfac 47586 usgrexmpl2nb0 48035 usgrexmpl2nb3 48038 usgrexmpl2trifr 48041 gpgnbgrvtx0 48076 gpgnbgrvtx1 48077 |
| Copyright terms: Public domain | W3C validator |