MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eltp Structured version   Visualization version   GIF version

Theorem eltp 4643
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.)
Hypothesis
Ref Expression
eltp.1 𝐴 ∈ V
Assertion
Ref Expression
eltp (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))

Proof of Theorem eltp
StepHypRef Expression
1 eltp.1 . 2 𝐴 ∈ V
2 eltpg 4640 . 2 (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷)))
31, 2ax-mp 5 1 (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵𝐴 = 𝐶𝐴 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wb 206  w3o 1085   = wceq 1540  wcel 2109  Vcvv 3438  {ctp 4583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-un 3910  df-sn 4580  df-pr 4582  df-tp 4584
This theorem is referenced by:  dftp2  4645  tpid1  4722  tpid2  4724  brtp  5470  tpres  7141  fntpb  7149  bpoly3  15983  cnfldfun  21293  cnfldfunOLD  21306  gausslemma2dlem0i  27291  2lgsoddprm  27343  sltsolem1  27603  nb3grprlem1  29343  frgr3vlem1  30235  frgr3vlem2  30236  prodtp  32785  s3f1  32901  hgt750lemb  34623  fmtno4prmfac  47557  usgrexmpl2nb0  48016  usgrexmpl2nb3  48019  usgrexmpl2trifr  48022  gpgnbgrvtx0  48059  gpgnbgrvtx1  48060
  Copyright terms: Public domain W3C validator