| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltp.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eltpg 4638 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ w3o 1085 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {ctp 4579 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-un 3903 df-sn 4576 df-pr 4578 df-tp 4580 |
| This theorem is referenced by: dftp2 4643 tpid1 4720 tpid2 4722 brtp 5466 tpres 7141 fntpb 7149 bpoly3 15967 cnfldfun 21307 cnfldfunOLD 21320 gausslemma2dlem0i 27303 2lgsoddprm 27355 sltsolem1 27615 nb3grprlem1 29360 frgr3vlem1 30255 frgr3vlem2 30256 prodtp 32815 s3f1 32935 hgt750lemb 34690 fmtno4prmfac 47696 usgrexmpl2nb0 48155 usgrexmpl2nb3 48158 usgrexmpl2trifr 48161 gpgnbgrvtx0 48198 gpgnbgrvtx1 48199 |
| Copyright terms: Public domain | W3C validator |