![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version |
Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
eltp.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | eltpg 4530 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 ∨ w3o 1079 = wceq 1522 ∈ wcel 2081 Vcvv 3437 {ctp 4476 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-v 3439 df-un 3864 df-sn 4473 df-pr 4475 df-tp 4477 |
This theorem is referenced by: dftp2 4534 tpid1 4611 tpid2 4613 tpres 6830 fntpb 6838 bpoly3 15245 cnfldfunALT 20240 gausslemma2dlem0i 25622 2lgsoddprm 25674 nb3grprlem1 26845 frgr3vlem1 27744 frgr3vlem2 27745 prodtp 30227 s3f1 30303 hgt750lemb 31544 brtp 32593 sltsolem1 32789 fmtno4prmfac 43216 |
Copyright terms: Public domain | W3C validator |