| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eltp | Structured version Visualization version GIF version | ||
| Description: A member of an unordered triple of classes is one of them. Special case of Exercise 1 of [TakeutiZaring] p. 17. (Contributed by NM, 8-Apr-1994.) (Revised by Mario Carneiro, 11-Feb-2015.) |
| Ref | Expression |
|---|---|
| eltp.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| eltp | ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eltp.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | eltpg 4653 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶, 𝐷} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶 ∨ 𝐴 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {ctp 4596 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3922 df-sn 4593 df-pr 4595 df-tp 4597 |
| This theorem is referenced by: dftp2 4658 tpid1 4735 tpid2 4737 brtp 5486 tpres 7178 fntpb 7186 bpoly3 16031 cnfldfun 21285 cnfldfunOLD 21298 gausslemma2dlem0i 27282 2lgsoddprm 27334 sltsolem1 27594 nb3grprlem1 29314 frgr3vlem1 30209 frgr3vlem2 30210 prodtp 32759 s3f1 32875 hgt750lemb 34654 fmtno4prmfac 47577 usgrexmpl2nb0 48026 usgrexmpl2nb3 48029 usgrexmpl2trifr 48032 gpgnbgrvtx0 48069 gpgnbgrvtx1 48070 |
| Copyright terms: Public domain | W3C validator |