| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uneqri | Structured version Visualization version GIF version | ||
| Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| uneqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| Ref | Expression |
|---|---|
| uneqri | ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elun 4133 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
| 2 | uneqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐶) |
| 4 | 3 | eqriv 2733 | 1 ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 |
| This theorem is referenced by: unidm 4137 uncom 4138 unass 4152 dfun2 4250 undi 4265 unab 4288 un0 4374 inundif 4459 |
| Copyright terms: Public domain | W3C validator |