MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uneqri Structured version   Visualization version   GIF version

Theorem uneqri 3906
Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.)
Hypothesis
Ref Expression
uneqri.1 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
Assertion
Ref Expression
uneqri (𝐴𝐵) = 𝐶
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem uneqri
StepHypRef Expression
1 elun 3904 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
2 uneqri.1 . . 3 ((𝑥𝐴𝑥𝐵) ↔ 𝑥𝐶)
31, 2bitri 264 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥𝐶)
43eqriv 2768 1 (𝐴𝐵) = 𝐶
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 836   = wceq 1631  wcel 2145  cun 3721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-un 3728
This theorem is referenced by:  unidm  3907  uncom  3908  unass  3921  dfun2  4008  undi  4023  unab  4042  un0  4111  inundif  4188
  Copyright terms: Public domain W3C validator