![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uneqri | Structured version Visualization version GIF version |
Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
uneqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
uneqri | ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4176 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | uneqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2737 | 1 ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 |
This theorem is referenced by: unidm 4180 uncom 4181 unass 4195 dfun2 4289 undi 4304 unab 4327 un0 4417 inundif 4502 |
Copyright terms: Public domain | W3C validator |