Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uneqri | Structured version Visualization version GIF version |
Description: Inference from membership to union. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
uneqri.1 | ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) |
Ref | Expression |
---|---|
uneqri | ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elun 4083 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ (𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵)) | |
2 | uneqri.1 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∨ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑥 ∈ (𝐴 ∪ 𝐵) ↔ 𝑥 ∈ 𝐶) |
4 | 3 | eqriv 2735 | 1 ⊢ (𝐴 ∪ 𝐵) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ∪ cun 3885 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 |
This theorem is referenced by: unidm 4086 uncom 4087 unass 4100 dfun2 4193 undi 4208 unab 4232 un0 4324 inundif 4412 |
Copyright terms: Public domain | W3C validator |