| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4071 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-dif 3906 |
| This theorem is referenced by: difeq12i 4075 dfun3 4227 dfin3 4228 dfin4 4229 invdif 4230 indif 4231 difundi 4241 difindi 4243 difdif2 4247 dif32 4253 difabs 4254 dfsymdif3 4257 notrab 4273 dif0 4329 unvdif 4426 difdifdir 4443 dfif3 4491 difpr 4754 iinvdif 5029 cnvin 6093 fndifnfp 7112 dif1o 8418 dfsdom2 9017 brttrcl2 9610 ttrcltr 9612 rnttrcl 9618 dju1dif 10067 m1bits 16351 clsval2 22935 mretopd 22977 cmpfi 23293 llycmpkgen2 23435 pserdvlem2 26336 nbgrssvwo2 29307 finsumvtxdg2ssteplem1 29491 frgrwopreglem3 30258 iundifdifd 32505 iundifdif 32506 difres 32544 gsumhashmul 33014 pmtrcnelor 33033 cycpmconjv 33084 cyc3conja 33099 elrgspnsubrunlem2 33188 sibfof 34308 eulerpartlemmf 34343 kur14lem2 35180 kur14lem6 35184 kur14lem7 35185 satfv1 35336 dfon4 35867 onint1 36423 bj-2upln1upl 36998 poimirlem8 37608 dmcnvep 38347 dfssr2 38476 prjspval2 42586 diophren 42786 ordeldif1o 43233 nonrel 43557 dssmapntrcls 44101 salincl 46305 meaiuninc 46462 carageniuncllem1 46502 iscnrm3rlem3 48926 |
| Copyright terms: Public domain | W3C validator |