![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 4129 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1536 ∖ cdif 3959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-dif 3965 |
This theorem is referenced by: difeq12i 4133 dfun3 4281 dfin3 4282 dfin4 4283 invdif 4284 indif 4285 difundi 4295 difindi 4297 difdif2 4301 dif32 4307 difabs 4308 dfsymdif3 4311 notrab 4327 dif0 4383 unvdif 4480 difdifdir 4497 dfif3 4544 difpr 4807 iinvdif 5084 cnvin 6166 fndifnfp 7195 dif1o 8536 dfsdom2 9134 brttrcl2 9751 ttrcltr 9753 rnttrcl 9759 dju1dif 10210 m1bits 16473 clsval2 23073 mretopd 23115 cmpfi 23431 llycmpkgen2 23573 pserdvlem2 26486 nbgrssvwo2 29393 finsumvtxdg2ssteplem1 29577 frgrwopreglem3 30342 iundifdifd 32581 iundifdif 32582 difres 32619 gsumhashmul 33046 pmtrcnelor 33093 cycpmconjv 33144 cyc3conja 33159 sibfof 34321 eulerpartlemmf 34356 kur14lem2 35191 kur14lem6 35195 kur14lem7 35196 satfv1 35347 dfon4 35874 onint1 36431 bj-2upln1upl 37006 poimirlem8 37614 dfssr2 38480 prjspval2 42599 diophren 42800 ordeldif1o 43249 nonrel 43573 dssmapntrcls 44117 salincl 46279 meaiuninc 46436 carageniuncllem1 46476 iscnrm3rlem3 48738 |
Copyright terms: Public domain | W3C validator |