| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4083 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-dif 3917 |
| This theorem is referenced by: difeq12i 4087 dfun3 4239 dfin3 4240 dfin4 4241 invdif 4242 indif 4243 difundi 4253 difindi 4255 difdif2 4259 dif32 4265 difabs 4266 dfsymdif3 4269 notrab 4285 dif0 4341 unvdif 4438 difdifdir 4455 dfif3 4503 difpr 4767 iinvdif 5044 cnvin 6117 fndifnfp 7150 dif1o 8464 dfsdom2 9064 brttrcl2 9667 ttrcltr 9669 rnttrcl 9675 dju1dif 10126 m1bits 16410 clsval2 22937 mretopd 22979 cmpfi 23295 llycmpkgen2 23437 pserdvlem2 26338 nbgrssvwo2 29289 finsumvtxdg2ssteplem1 29473 frgrwopreglem3 30243 iundifdifd 32490 iundifdif 32491 difres 32529 gsumhashmul 33001 pmtrcnelor 33048 cycpmconjv 33099 cyc3conja 33114 elrgspnsubrunlem2 33199 sibfof 34331 eulerpartlemmf 34366 kur14lem2 35194 kur14lem6 35198 kur14lem7 35199 satfv1 35350 dfon4 35881 onint1 36437 bj-2upln1upl 37012 poimirlem8 37622 dmcnvep 38361 dfssr2 38490 prjspval2 42601 diophren 42801 ordeldif1o 43249 nonrel 43573 dssmapntrcls 44117 salincl 46322 meaiuninc 46479 carageniuncllem1 46519 iscnrm3rlem3 48930 |
| Copyright terms: Public domain | W3C validator |