| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4079 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: difeq12i 4083 dfun3 4235 dfin3 4236 dfin4 4237 invdif 4238 indif 4239 difundi 4249 difindi 4251 difdif2 4255 dif32 4261 difabs 4262 dfsymdif3 4265 notrab 4281 dif0 4337 unvdif 4434 difdifdir 4451 dfif3 4499 difpr 4763 iinvdif 5039 cnvin 6105 fndifnfp 7132 dif1o 8441 dfsdom2 9041 brttrcl2 9643 ttrcltr 9645 rnttrcl 9651 dju1dif 10102 m1bits 16386 clsval2 22913 mretopd 22955 cmpfi 23271 llycmpkgen2 23413 pserdvlem2 26314 nbgrssvwo2 29265 finsumvtxdg2ssteplem1 29449 frgrwopreglem3 30216 iundifdifd 32463 iundifdif 32464 difres 32502 gsumhashmul 32974 pmtrcnelor 33021 cycpmconjv 33072 cyc3conja 33087 elrgspnsubrunlem2 33172 sibfof 34304 eulerpartlemmf 34339 kur14lem2 35167 kur14lem6 35171 kur14lem7 35172 satfv1 35323 dfon4 35854 onint1 36410 bj-2upln1upl 36985 poimirlem8 37595 dmcnvep 38334 dfssr2 38463 prjspval2 42574 diophren 42774 ordeldif1o 43222 nonrel 43546 dssmapntrcls 44090 salincl 46295 meaiuninc 46452 carageniuncllem1 46492 iscnrm3rlem3 48903 |
| Copyright terms: Public domain | W3C validator |