| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4095 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3923 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-dif 3929 |
| This theorem is referenced by: difeq12i 4099 dfun3 4251 dfin3 4252 dfin4 4253 invdif 4254 indif 4255 difundi 4265 difindi 4267 difdif2 4271 dif32 4277 difabs 4278 dfsymdif3 4281 notrab 4297 dif0 4353 unvdif 4450 difdifdir 4467 dfif3 4515 difpr 4779 iinvdif 5056 cnvin 6133 fndifnfp 7168 dif1o 8512 dfsdom2 9110 brttrcl2 9728 ttrcltr 9730 rnttrcl 9736 dju1dif 10187 m1bits 16459 clsval2 22988 mretopd 23030 cmpfi 23346 llycmpkgen2 23488 pserdvlem2 26390 nbgrssvwo2 29341 finsumvtxdg2ssteplem1 29525 frgrwopreglem3 30295 iundifdifd 32542 iundifdif 32543 difres 32581 gsumhashmul 33055 pmtrcnelor 33102 cycpmconjv 33153 cyc3conja 33168 elrgspnsubrunlem2 33243 sibfof 34372 eulerpartlemmf 34407 kur14lem2 35229 kur14lem6 35233 kur14lem7 35234 satfv1 35385 dfon4 35911 onint1 36467 bj-2upln1upl 37042 poimirlem8 37652 dfssr2 38517 prjspval2 42636 diophren 42836 ordeldif1o 43284 nonrel 43608 dssmapntrcls 44152 salincl 46353 meaiuninc 46510 carageniuncllem1 46550 iscnrm3rlem3 48916 |
| Copyright terms: Public domain | W3C validator |