![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 4143 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∖ cdif 3973 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-dif 3979 |
This theorem is referenced by: difeq12i 4147 dfun3 4295 dfin3 4296 dfin4 4297 invdif 4298 indif 4299 difundi 4309 difindi 4311 difdif2 4315 dif32 4321 difabs 4322 dfsymdif3 4325 notrab 4341 dif0 4400 unvdif 4498 difdifdir 4515 dfif3 4562 difpr 4828 iinvdif 5103 cnvin 6176 fndifnfp 7210 dif1o 8556 dfsdom2 9162 brttrcl2 9783 ttrcltr 9785 rnttrcl 9791 dju1dif 10242 m1bits 16486 clsval2 23079 mretopd 23121 cmpfi 23437 llycmpkgen2 23579 pserdvlem2 26490 nbgrssvwo2 29397 finsumvtxdg2ssteplem1 29581 frgrwopreglem3 30346 iundifdifd 32584 iundifdif 32585 difres 32622 gsumhashmul 33040 pmtrcnelor 33084 cycpmconjv 33135 cyc3conja 33150 sibfof 34305 eulerpartlemmf 34340 kur14lem2 35175 kur14lem6 35179 kur14lem7 35180 satfv1 35331 dfon4 35857 onint1 36415 bj-2upln1upl 36990 poimirlem8 37588 dfssr2 38455 prjspval2 42568 diophren 42769 ordeldif1o 43222 nonrel 43546 dssmapntrcls 44090 salincl 46245 meaiuninc 46402 carageniuncllem1 46442 iscnrm3rlem3 48622 |
Copyright terms: Public domain | W3C validator |