| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4086 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-dif 3920 |
| This theorem is referenced by: difeq12i 4090 dfun3 4242 dfin3 4243 dfin4 4244 invdif 4245 indif 4246 difundi 4256 difindi 4258 difdif2 4262 dif32 4268 difabs 4269 dfsymdif3 4272 notrab 4288 dif0 4344 unvdif 4441 difdifdir 4458 dfif3 4506 difpr 4770 iinvdif 5047 cnvin 6120 fndifnfp 7153 dif1o 8467 dfsdom2 9070 brttrcl2 9674 ttrcltr 9676 rnttrcl 9682 dju1dif 10133 m1bits 16417 clsval2 22944 mretopd 22986 cmpfi 23302 llycmpkgen2 23444 pserdvlem2 26345 nbgrssvwo2 29296 finsumvtxdg2ssteplem1 29480 frgrwopreglem3 30250 iundifdifd 32497 iundifdif 32498 difres 32536 gsumhashmul 33008 pmtrcnelor 33055 cycpmconjv 33106 cyc3conja 33121 elrgspnsubrunlem2 33206 sibfof 34338 eulerpartlemmf 34373 kur14lem2 35201 kur14lem6 35205 kur14lem7 35206 satfv1 35357 dfon4 35888 onint1 36444 bj-2upln1upl 37019 poimirlem8 37629 dmcnvep 38368 dfssr2 38497 prjspval2 42608 diophren 42808 ordeldif1o 43256 nonrel 43580 dssmapntrcls 44124 salincl 46329 meaiuninc 46486 carageniuncllem1 46526 iscnrm3rlem3 48934 |
| Copyright terms: Public domain | W3C validator |