Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 4071 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3406 df-dif 3908 |
This theorem is referenced by: difeq12i 4075 dfun3 4220 dfin3 4221 dfin4 4222 invdif 4223 indif 4224 difundi 4234 difindi 4236 difdif2 4241 dif32 4247 difabs 4248 dfsymdif3 4251 notrab 4266 dif0 4327 unvdif 4429 difdifdir 4444 dfif3 4495 difpr 4758 iinvdif 5035 cnvin 6090 fndifnfp 7113 dif1o 8410 dfsdom2 8970 brttrcl2 9580 ttrcltr 9582 rnttrcl 9588 dju1dif 10038 m1bits 16251 clsval2 22311 mretopd 22353 cmpfi 22669 llycmpkgen2 22811 pserdvlem2 25697 nbgrssvwo2 28084 finsumvtxdg2ssteplem1 28267 frgrwopreglem3 29032 iundifdifd 31252 iundifdif 31253 difres 31290 gsumhashmul 31667 pmtrcnelor 31711 cycpmconjv 31760 cyc3conja 31775 sibfof 32671 eulerpartlemmf 32706 kur14lem2 33532 kur14lem6 33536 kur14lem7 33537 satfv1 33688 dfon4 34334 onint1 34777 bj-2upln1upl 35351 poimirlem8 35941 dfssr2 36817 prjspval2 40763 diophren 40948 nonrel 41565 dssmapntrcls 42111 salincl 44252 meaiuninc 44408 carageniuncllem1 44448 iscnrm3rlem3 46653 |
Copyright terms: Public domain | W3C validator |