| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4067 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-dif 3900 |
| This theorem is referenced by: difeq12i 4071 dfun3 4223 dfin3 4224 dfin4 4225 invdif 4226 indif 4227 difundi 4237 difindi 4239 difdif2 4243 dif32 4249 difabs 4250 dfsymdif3 4253 notrab 4269 dif0 4325 unvdif 4422 difdifdir 4439 dfif3 4487 difpr 4752 iinvdif 5026 cnvin 6091 fndifnfp 7110 dif1o 8415 dfsdom2 9013 brttrcl2 9604 ttrcltr 9606 rnttrcl 9612 dju1dif 10064 m1bits 16351 clsval2 22965 mretopd 23007 cmpfi 23323 llycmpkgen2 23465 pserdvlem2 26365 nbgrssvwo2 29340 finsumvtxdg2ssteplem1 29524 frgrwopreglem3 30294 iundifdifd 32541 iundifdif 32542 difres 32580 gsumhashmul 33041 pmtrcnelor 33060 cycpmconjv 33111 cyc3conja 33126 elrgspnsubrunlem2 33215 sibfof 34353 eulerpartlemmf 34388 fineqvnttrclselem1 35141 kur14lem2 35251 kur14lem6 35255 kur14lem7 35256 satfv1 35407 dfon4 35935 onint1 36491 bj-2upln1upl 37066 poimirlem8 37676 dmcnvep 38415 dfssr2 38544 prjspval2 42654 diophren 42854 ordeldif1o 43301 nonrel 43625 dssmapntrcls 44169 salincl 46370 meaiuninc 46527 carageniuncllem1 46567 iscnrm3rlem3 48981 |
| Copyright terms: Public domain | W3C validator |