| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version | ||
| Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
| Ref | Expression |
|---|---|
| difeq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | difeq2 4079 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3908 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-dif 3914 |
| This theorem is referenced by: difeq12i 4083 dfun3 4235 dfin3 4236 dfin4 4237 invdif 4238 indif 4239 difundi 4249 difindi 4251 difdif2 4255 dif32 4261 difabs 4262 dfsymdif3 4265 notrab 4281 dif0 4337 unvdif 4434 difdifdir 4451 dfif3 4499 difpr 4763 iinvdif 5039 cnvin 6105 fndifnfp 7132 dif1o 8441 dfsdom2 9041 brttrcl2 9643 ttrcltr 9645 rnttrcl 9651 dju1dif 10102 m1bits 16386 clsval2 22970 mretopd 23012 cmpfi 23328 llycmpkgen2 23470 pserdvlem2 26371 nbgrssvwo2 29342 finsumvtxdg2ssteplem1 29526 frgrwopreglem3 30293 iundifdifd 32540 iundifdif 32541 difres 32579 gsumhashmul 33044 pmtrcnelor 33063 cycpmconjv 33114 cyc3conja 33129 elrgspnsubrunlem2 33215 sibfof 34324 eulerpartlemmf 34359 kur14lem2 35187 kur14lem6 35191 kur14lem7 35192 satfv1 35343 dfon4 35874 onint1 36430 bj-2upln1upl 37005 poimirlem8 37615 dmcnvep 38354 dfssr2 38483 prjspval2 42594 diophren 42794 ordeldif1o 43242 nonrel 43566 dssmapntrcls 44110 salincl 46315 meaiuninc 46472 carageniuncllem1 46512 iscnrm3rlem3 48923 |
| Copyright terms: Public domain | W3C validator |