Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 4047 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-dif 3886 |
This theorem is referenced by: difeq12i 4051 dfun3 4196 dfin3 4197 dfin4 4198 invdif 4199 indif 4200 difundi 4210 difindi 4212 difdif2 4217 dif32 4223 difabs 4224 dfsymdif3 4227 notrab 4242 dif0 4303 unvdif 4405 difdifdir 4419 dfif3 4470 difpr 4733 iinvdif 5005 cnvin 6037 fndifnfp 7030 dif1o 8292 dfsdom2 8836 dju1dif 9859 m1bits 16075 clsval2 22109 mretopd 22151 cmpfi 22467 llycmpkgen2 22609 pserdvlem2 25492 nbgrssvwo2 27632 finsumvtxdg2ssteplem1 27815 frgrwopreglem3 28579 iundifdifd 30802 iundifdif 30803 difres 30840 gsumhashmul 31218 pmtrcnelor 31262 cycpmconjv 31311 cyc3conja 31326 sibfof 32207 eulerpartlemmf 32242 kur14lem2 33069 kur14lem6 33073 kur14lem7 33074 satfv1 33225 brttrcl2 33700 ttrcltr 33702 rnttrcl 33708 dfon4 34122 onint1 34565 bj-2upln1upl 35141 poimirlem8 35712 dfssr2 36544 prjspval2 40373 diophren 40551 nonrel 41081 dssmapntrcls 41627 salincl 43754 meaiuninc 43909 carageniuncllem1 43949 iscnrm3rlem3 46124 |
Copyright terms: Public domain | W3C validator |