Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difeq2i | Structured version Visualization version GIF version |
Description: Inference adding difference to the left in a class equality. (Contributed by NM, 15-Nov-2002.) |
Ref | Expression |
---|---|
difeq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
difeq2i | ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difeq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | difeq2 4051 | . 2 ⊢ (𝐴 = 𝐵 → (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-dif 3890 |
This theorem is referenced by: difeq12i 4055 dfun3 4199 dfin3 4200 dfin4 4201 invdif 4202 indif 4203 difundi 4213 difindi 4215 difdif2 4220 dif32 4226 difabs 4227 dfsymdif3 4230 notrab 4245 dif0 4306 unvdif 4408 difdifdir 4422 dfif3 4473 difpr 4736 iinvdif 5009 cnvin 6048 fndifnfp 7048 dif1o 8330 dfsdom2 8883 brttrcl2 9472 ttrcltr 9474 rnttrcl 9480 dju1dif 9928 m1bits 16147 clsval2 22201 mretopd 22243 cmpfi 22559 llycmpkgen2 22701 pserdvlem2 25587 nbgrssvwo2 27729 finsumvtxdg2ssteplem1 27912 frgrwopreglem3 28678 iundifdifd 30901 iundifdif 30902 difres 30939 gsumhashmul 31316 pmtrcnelor 31360 cycpmconjv 31409 cyc3conja 31424 sibfof 32307 eulerpartlemmf 32342 kur14lem2 33169 kur14lem6 33173 kur14lem7 33174 satfv1 33325 dfon4 34195 onint1 34638 bj-2upln1upl 35214 poimirlem8 35785 dfssr2 36617 prjspval2 40452 diophren 40635 nonrel 41192 dssmapntrcls 41738 salincl 43864 meaiuninc 44019 carageniuncllem1 44059 iscnrm3rlem3 46236 |
Copyright terms: Public domain | W3C validator |