![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dif32 | Structured version Visualization version GIF version |
Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
Ref | Expression |
---|---|
dif32 | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4014 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
2 | 1 | difeq2i 3982 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∖ (𝐶 ∪ 𝐵)) |
3 | difun1 4146 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | |
4 | difun1 4146 | . 2 ⊢ (𝐴 ∖ (𝐶 ∪ 𝐵)) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | |
5 | 2, 3, 4 | 3eqtr3i 2804 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1507 ∖ cdif 3822 ∪ cun 3823 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ral 3087 df-rab 3091 df-v 3411 df-dif 3828 df-un 3830 df-in 3832 |
This theorem is referenced by: difdifdir 4314 difsnen 8387 nbupgruvtxres 26882 poimirlem25 34306 |
Copyright terms: Public domain | W3C validator |