| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif32 | Structured version Visualization version GIF version | ||
| Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif32 | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4138 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 2 | 1 | difeq2i 4103 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∖ (𝐶 ∪ 𝐵)) |
| 3 | difun1 4279 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | |
| 4 | difun1 4279 | . 2 ⊢ (𝐴 ∖ (𝐶 ∪ 𝐵)) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr3i 2765 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∖ cdif 3928 ∪ cun 3929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 |
| This theorem is referenced by: difdifdir 4472 difsnen 9075 nbupgruvtxres 29352 poimirlem25 37611 |
| Copyright terms: Public domain | W3C validator |