Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif32 Structured version   Visualization version   GIF version

Theorem dif32 4220
 Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
dif32 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)

Proof of Theorem dif32
StepHypRef Expression
1 uncom 4083 . . 3 (𝐵𝐶) = (𝐶𝐵)
21difeq2i 4050 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (𝐶𝐵))
3 difun1 4217 . 2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
4 difun1 4217 . 2 (𝐴 ∖ (𝐶𝐵)) = ((𝐴𝐶) ∖ 𝐵)
52, 3, 43eqtr3i 2832 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   = wceq 1538   ∖ cdif 3881   ∪ cun 3882 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891 This theorem is referenced by:  difdifdir  4398  difsnen  8586  nbupgruvtxres  27201  poimirlem25  35081
 Copyright terms: Public domain W3C validator