MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif32 Structured version   Visualization version   GIF version

Theorem dif32 4247
Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
dif32 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)

Proof of Theorem dif32
StepHypRef Expression
1 uncom 4103 . . 3 (𝐵𝐶) = (𝐶𝐵)
21difeq2i 4068 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (𝐶𝐵))
3 difun1 4244 . 2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
4 difun1 4244 . 2 (𝐴 ∖ (𝐶𝐵)) = ((𝐴𝐶) ∖ 𝐵)
52, 3, 43eqtr3i 2762 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3894  cun 3895
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904
This theorem is referenced by:  difdifdir  4437  difsnen  8967  nbupgruvtxres  29380  poimirlem25  37685
  Copyright terms: Public domain W3C validator