| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif32 | Structured version Visualization version GIF version | ||
| Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif32 | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4123 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 2 | 1 | difeq2i 4088 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∖ (𝐶 ∪ 𝐵)) |
| 3 | difun1 4264 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | |
| 4 | difun1 4264 | . 2 ⊢ (𝐴 ∖ (𝐶 ∪ 𝐵)) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr3i 2761 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3913 ∪ cun 3914 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 |
| This theorem is referenced by: difdifdir 4457 difsnen 9026 nbupgruvtxres 29340 poimirlem25 37634 |
| Copyright terms: Public domain | W3C validator |