MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dif32 Structured version   Visualization version   GIF version

Theorem dif32 4321
Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
Assertion
Ref Expression
dif32 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)

Proof of Theorem dif32
StepHypRef Expression
1 uncom 4181 . . 3 (𝐵𝐶) = (𝐶𝐵)
21difeq2i 4146 . 2 (𝐴 ∖ (𝐵𝐶)) = (𝐴 ∖ (𝐶𝐵))
3 difun1 4318 . 2 (𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
4 difun1 4318 . 2 (𝐴 ∖ (𝐶𝐵)) = ((𝐴𝐶) ∖ 𝐵)
52, 3, 43eqtr3i 2776 1 ((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  cun 3974
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983
This theorem is referenced by:  difdifdir  4515  difsnen  9121  nbupgruvtxres  29444  poimirlem25  37607
  Copyright terms: Public domain W3C validator