| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dif32 | Structured version Visualization version GIF version | ||
| Description: Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
| Ref | Expression |
|---|---|
| dif32 | ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4103 | . . 3 ⊢ (𝐵 ∪ 𝐶) = (𝐶 ∪ 𝐵) | |
| 2 | 1 | difeq2i 4068 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = (𝐴 ∖ (𝐶 ∪ 𝐵)) |
| 3 | difun1 4244 | . 2 ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | |
| 4 | difun1 4244 | . 2 ⊢ (𝐴 ∖ (𝐶 ∪ 𝐵)) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | |
| 5 | 2, 3, 4 | 3eqtr3i 2762 | 1 ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3894 ∪ cun 3895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 |
| This theorem is referenced by: difdifdir 4437 difsnen 8967 nbupgruvtxres 29380 poimirlem25 37685 |
| Copyright terms: Public domain | W3C validator |