MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnen Structured version   Visualization version   GIF version

Theorem difsnen 9027
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
difsnen ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))

Proof of Theorem difsnen
StepHypRef Expression
1 difexg 5287 . . . . . 6 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ∈ V)
2 enrefg 8958 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
31, 2syl 17 . . . . 5 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
433ad2ant1 1133 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
5 sneq 4602 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = {𝐵})
65difeq2d 4092 . . . . 5 (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵}))
76breq2d 5122 . . . 4 (𝐴 = 𝐵 → ((𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}) ↔ (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
84, 7syl5ibcom 245 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
98imp 406 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
10 simpl1 1192 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝑋𝑉)
11 difexg 5287 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V)
12 enrefg 8958 . . . . . 6 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
1310, 1, 11, 124syl 19 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
14 dif32 4268 . . . . 5 ((𝑋 ∖ {𝐴}) ∖ {𝐵}) = ((𝑋 ∖ {𝐵}) ∖ {𝐴})
1513, 14breqtrdi 5151 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}))
16 simpl3 1194 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝑋)
17 simpl2 1193 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝑋)
18 en2sn 9015 . . . . 5 ((𝐵𝑋𝐴𝑋) → {𝐵} ≈ {𝐴})
1916, 17, 18syl2anc 584 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → {𝐵} ≈ {𝐴})
20 disjdifr 4439 . . . . 5 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅
2120a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅)
22 disjdifr 4439 . . . . 5 (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅
2322a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)
24 unen 9020 . . . 4 (((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∧ {𝐵} ≈ {𝐴}) ∧ ((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅ ∧ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
2515, 19, 21, 23, 24syl22anc 838 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
26 simpr 484 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝐵)
2726necomd 2981 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝐴)
28 eldifsn 4753 . . . . 5 (𝐵 ∈ (𝑋 ∖ {𝐴}) ↔ (𝐵𝑋𝐵𝐴))
2916, 27, 28sylanbrc 583 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑋 ∖ {𝐴}))
30 difsnid 4777 . . . 4 (𝐵 ∈ (𝑋 ∖ {𝐴}) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
3129, 30syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
32 eldifsn 4753 . . . . 5 (𝐴 ∈ (𝑋 ∖ {𝐵}) ↔ (𝐴𝑋𝐴𝐵))
3317, 26, 32sylanbrc 583 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑋 ∖ {𝐵}))
34 difsnid 4777 . . . 4 (𝐴 ∈ (𝑋 ∖ {𝐵}) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
3533, 34syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
3625, 31, 353brtr3d 5141 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
379, 36pm2.61dane 3013 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  cun 3915  cin 3916  c0 4299  {csn 4592   class class class wbr 5110  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922
This theorem is referenced by:  domdifsn  9028  domunsncan  9046  enfixsn  9055  infdifsn  9617  dju1dif  10133
  Copyright terms: Public domain W3C validator