MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difsnen Structured version   Visualization version   GIF version

Theorem difsnen 9053
Description: All decrements of a set are equinumerous. (Contributed by Stefan O'Rear, 19-Feb-2015.)
Assertion
Ref Expression
difsnen ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))

Proof of Theorem difsnen
StepHypRef Expression
1 difexg 5328 . . . . . 6 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ∈ V)
2 enrefg 8980 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
31, 2syl 17 . . . . 5 (𝑋𝑉 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
433ad2ant1 1134 . . . 4 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}))
5 sneq 4639 . . . . . 6 (𝐴 = 𝐵 → {𝐴} = {𝐵})
65difeq2d 4123 . . . . 5 (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) = (𝑋 ∖ {𝐵}))
76breq2d 5161 . . . 4 (𝐴 = 𝐵 → ((𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐴}) ↔ (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
84, 7syl5ibcom 244 . . 3 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝐴 = 𝐵 → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵})))
98imp 408 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴 = 𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
10 simpl1 1192 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝑋𝑉)
11 difexg 5328 . . . . . 6 ((𝑋 ∖ {𝐴}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V)
12 enrefg 8980 . . . . . 6 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∈ V → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
1310, 1, 11, 124syl 19 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐴}) ∖ {𝐵}))
14 dif32 4293 . . . . 5 ((𝑋 ∖ {𝐴}) ∖ {𝐵}) = ((𝑋 ∖ {𝐵}) ∖ {𝐴})
1513, 14breqtrdi 5190 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → ((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}))
16 simpl3 1194 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝑋)
17 simpl2 1193 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝑋)
18 en2sn 9041 . . . . 5 ((𝐵𝑋𝐴𝑋) → {𝐵} ≈ {𝐴})
1916, 17, 18syl2anc 585 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → {𝐵} ≈ {𝐴})
20 disjdifr 4473 . . . . 5 (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅
2120a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅)
22 disjdifr 4473 . . . . 5 (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅
2322a1i 11 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)
24 unen 9046 . . . 4 (((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ≈ ((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∧ {𝐵} ≈ {𝐴}) ∧ ((((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∩ {𝐵}) = ∅ ∧ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∩ {𝐴}) = ∅)) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
2515, 19, 21, 23, 24syl22anc 838 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) ≈ (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}))
26 simpr 486 . . . . . 6 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴𝐵)
2726necomd 2997 . . . . 5 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵𝐴)
28 eldifsn 4791 . . . . 5 (𝐵 ∈ (𝑋 ∖ {𝐴}) ↔ (𝐵𝑋𝐵𝐴))
2916, 27, 28sylanbrc 584 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐵 ∈ (𝑋 ∖ {𝐴}))
30 difsnid 4814 . . . 4 (𝐵 ∈ (𝑋 ∖ {𝐴}) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
3129, 30syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐴}) ∖ {𝐵}) ∪ {𝐵}) = (𝑋 ∖ {𝐴}))
32 eldifsn 4791 . . . . 5 (𝐴 ∈ (𝑋 ∖ {𝐵}) ↔ (𝐴𝑋𝐴𝐵))
3317, 26, 32sylanbrc 584 . . . 4 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → 𝐴 ∈ (𝑋 ∖ {𝐵}))
34 difsnid 4814 . . . 4 (𝐴 ∈ (𝑋 ∖ {𝐵}) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
3533, 34syl 17 . . 3 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (((𝑋 ∖ {𝐵}) ∖ {𝐴}) ∪ {𝐴}) = (𝑋 ∖ {𝐵}))
3625, 31, 353brtr3d 5180 . 2 (((𝑋𝑉𝐴𝑋𝐵𝑋) ∧ 𝐴𝐵) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
379, 36pm2.61dane 3030 1 ((𝑋𝑉𝐴𝑋𝐵𝑋) → (𝑋 ∖ {𝐴}) ≈ (𝑋 ∖ {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2941  Vcvv 3475  cdif 3946  cun 3947  cin 3948  c0 4323  {csn 4629   class class class wbr 5149  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-en 8940
This theorem is referenced by:  domdifsn  9054  domunsncan  9072  enfixsn  9081  infdifsn  9652  dju1dif  10167
  Copyright terms: Public domain W3C validator