Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > difin2 | Structured version Visualization version GIF version |
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
difin2 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3914 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | 1 | pm4.71d 562 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
3 | 2 | anbi1d 630 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | eldif 3897 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | elin 3903 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴)) | |
6 | eldif 3897 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 6 | anbi1i 624 | . . . 4 ⊢ ((𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
8 | ancom 461 | . . . . 5 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
9 | anass 469 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
10 | 8, 9 | bitr4i 277 | . . . 4 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
11 | 5, 7, 10 | 3bitri 297 | . . 3 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
12 | 3, 4, 11 | 3bitr4g 314 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴))) |
13 | 12 | eqrdv 2736 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 ∩ cin 3886 ⊆ wss 3887 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 |
This theorem is referenced by: gsumdifsnd 19562 issubdrg 20049 restcld 22323 limcnlp 25042 symgcom2 31353 difelsiga 32101 sigapildsyslem 32129 ldgenpisyslem1 32131 difelcarsg2 32280 ballotlemfp1 32458 asindmre 35860 caragendifcl 44052 gsumdifsndf 45375 |
Copyright terms: Public domain | W3C validator |