| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > difin2 | Structured version Visualization version GIF version | ||
| Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| Ref | Expression |
|---|---|
| difin2 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3943 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
| 2 | 1 | pm4.71d 561 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
| 3 | 2 | anbi1d 631 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵))) |
| 4 | eldif 3927 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 5 | ancom 460 | . . . 4 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 6 | elin 3933 | . . . . 5 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴)) | |
| 7 | eldif 3927 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
| 8 | 6, 7 | bianbi 627 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
| 9 | anass 468 | . . . 4 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
| 10 | 5, 8, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
| 11 | 3, 4, 10 | 3bitr4g 314 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴))) |
| 12 | 11 | eqrdv 2728 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∩ cin 3916 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-in 3924 df-ss 3934 |
| This theorem is referenced by: gsumdifsnd 19898 issubdrg 20696 restcld 23066 limcnlp 25786 symgcom2 33048 difelsiga 34130 sigapildsyslem 34158 ldgenpisyslem1 34160 difelcarsg2 34311 ballotlemfp1 34490 asindmre 37704 caragendifcl 46519 gsumdifsndf 48173 |
| Copyright terms: Public domain | W3C validator |