MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin2 Structured version   Visualization version   GIF version

Theorem difin2 4267
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))

Proof of Theorem difin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3943 . . . . 5 (𝐴𝐶 → (𝑥𝐴𝑥𝐶))
21pm4.71d 561 . . . 4 (𝐴𝐶 → (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐶)))
32anbi1d 631 . . 3 (𝐴𝐶 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵)))
4 eldif 3927 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 ancom 460 . . . 4 (((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
6 elin 3933 . . . . 5 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶𝐵) ∧ 𝑥𝐴))
7 eldif 3927 . . . . 5 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
86, 7bianbi 627 . . . 4 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴))
9 anass 468 . . . 4 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
105, 8, 93bitr4i 303 . . 3 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
113, 4, 103bitr4g 314 . 2 (𝐴𝐶 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ ((𝐶𝐵) ∩ 𝐴)))
1211eqrdv 2728 1 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  cdif 3914  cin 3916  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-dif 3920  df-in 3924  df-ss 3934
This theorem is referenced by:  gsumdifsnd  19898  issubdrg  20696  restcld  23066  limcnlp  25786  symgcom2  33048  difelsiga  34130  sigapildsyslem  34158  ldgenpisyslem1  34160  difelcarsg2  34311  ballotlemfp1  34490  asindmre  37704  caragendifcl  46519  gsumdifsndf  48173
  Copyright terms: Public domain W3C validator