MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin2 Structured version   Visualization version   GIF version

Theorem difin2 4290
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))

Proof of Theorem difin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3970 . . . . 5 (𝐴𝐶 → (𝑥𝐴𝑥𝐶))
21pm4.71d 560 . . . 4 (𝐴𝐶 → (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐶)))
32anbi1d 629 . . 3 (𝐴𝐶 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵)))
4 eldif 3954 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 ancom 459 . . . 4 (((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
6 elin 3960 . . . . 5 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶𝐵) ∧ 𝑥𝐴))
7 eldif 3954 . . . . 5 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
86, 7bianbi 625 . . . 4 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴))
9 anass 467 . . . 4 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
105, 8, 93bitr4i 302 . . 3 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
113, 4, 103bitr4g 313 . 2 (𝐴𝐶 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ ((𝐶𝐵) ∩ 𝐴)))
1211eqrdv 2723 1 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  cdif 3941  cin 3943  wss 3944
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-dif 3947  df-in 3951  df-ss 3961
This theorem is referenced by:  gsumdifsnd  19928  issubdrg  20680  restcld  23120  limcnlp  25851  symgcom2  32897  difelsiga  33880  sigapildsyslem  33908  ldgenpisyslem1  33910  difelcarsg2  34061  ballotlemfp1  34239  asindmre  37304  caragendifcl  46037  gsumdifsndf  47426
  Copyright terms: Public domain W3C validator