MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  difin2 Structured version   Visualization version   GIF version

Theorem difin2 4276
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
difin2 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))

Proof of Theorem difin2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ssel 3952 . . . . 5 (𝐴𝐶 → (𝑥𝐴𝑥𝐶))
21pm4.71d 561 . . . 4 (𝐴𝐶 → (𝑥𝐴 ↔ (𝑥𝐴𝑥𝐶)))
32anbi1d 631 . . 3 (𝐴𝐶 → ((𝑥𝐴 ∧ ¬ 𝑥𝐵) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵)))
4 eldif 3936 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
5 ancom 460 . . . 4 (((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
6 elin 3942 . . . . 5 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶𝐵) ∧ 𝑥𝐴))
7 eldif 3936 . . . . 5 (𝑥 ∈ (𝐶𝐵) ↔ (𝑥𝐶 ∧ ¬ 𝑥𝐵))
86, 7bianbi 627 . . . 4 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐶 ∧ ¬ 𝑥𝐵) ∧ 𝑥𝐴))
9 anass 468 . . . 4 (((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵) ↔ (𝑥𝐴 ∧ (𝑥𝐶 ∧ ¬ 𝑥𝐵)))
105, 8, 93bitr4i 303 . . 3 (𝑥 ∈ ((𝐶𝐵) ∩ 𝐴) ↔ ((𝑥𝐴𝑥𝐶) ∧ ¬ 𝑥𝐵))
113, 4, 103bitr4g 314 . 2 (𝐴𝐶 → (𝑥 ∈ (𝐴𝐵) ↔ 𝑥 ∈ ((𝐶𝐵) ∩ 𝐴)))
1211eqrdv 2733 1 (𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  cdif 3923  cin 3925  wss 3926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-dif 3929  df-in 3933  df-ss 3943
This theorem is referenced by:  gsumdifsnd  19942  issubdrg  20740  restcld  23110  limcnlp  25831  symgcom2  33095  difelsiga  34164  sigapildsyslem  34192  ldgenpisyslem1  34194  difelcarsg2  34345  ballotlemfp1  34524  asindmre  37727  caragendifcl  46543  gsumdifsndf  48156
  Copyright terms: Public domain W3C validator