![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > difin2 | Structured version Visualization version GIF version |
Description: Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
Ref | Expression |
---|---|
difin2 | ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3821 | . . . . 5 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶)) | |
2 | 1 | pm4.71d 559 | . . . 4 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ 𝐴 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶))) |
3 | 2 | anbi1d 625 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → ((𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵))) |
4 | eldif 3808 | . . 3 ⊢ (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵)) | |
5 | elin 4023 | . . . 4 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ (𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴)) | |
6 | eldif 3808 | . . . . 5 ⊢ (𝑥 ∈ (𝐶 ∖ 𝐵) ↔ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵)) | |
7 | 6 | anbi1i 619 | . . . 4 ⊢ ((𝑥 ∈ (𝐶 ∖ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴)) |
8 | ancom 454 | . . . . 5 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
9 | anass 462 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵))) | |
10 | 8, 9 | bitr4i 270 | . . . 4 ⊢ (((𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵) ∧ 𝑥 ∈ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
11 | 5, 7, 10 | 3bitri 289 | . . 3 ⊢ (𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐶) ∧ ¬ 𝑥 ∈ 𝐵)) |
12 | 3, 4, 11 | 3bitr4g 306 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (𝑥 ∈ (𝐴 ∖ 𝐵) ↔ 𝑥 ∈ ((𝐶 ∖ 𝐵) ∩ 𝐴))) |
13 | 12 | eqrdv 2823 | 1 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 386 = wceq 1658 ∈ wcel 2166 ∖ cdif 3795 ∩ cin 3797 ⊆ wss 3798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-dif 3801 df-in 3805 df-ss 3812 |
This theorem is referenced by: gsumdifsnd 18713 issubdrg 19161 restcld 21347 limcnlp 24041 difelsiga 30741 sigapildsyslem 30769 ldgenpisyslem1 30771 difelcarsg2 30920 ballotlemfp1 31099 asindmre 34038 caragendifcl 41522 gsumdifsndf 42991 |
Copyright terms: Public domain | W3C validator |