Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measssd Structured version   Visualization version   GIF version

Theorem measssd 30890
Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.)
Hypotheses
Ref Expression
measssd.1 (𝜑𝑀 ∈ (measures‘𝑆))
measssd.2 (𝜑𝐴𝑆)
measssd.3 (𝜑𝐵𝑆)
measssd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
measssd (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem measssd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measssd.1 . . . . 5 (𝜑𝑀 ∈ (measures‘𝑆))
2 measbase 30872 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
31, 2syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
4 measssd.3 . . . . . 6 (𝜑𝐵𝑆)
5 measssd.2 . . . . . 6 (𝜑𝐴𝑆)
6 difelsiga 30808 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
73, 4, 5, 6syl3anc 1439 . . . . 5 (𝜑 → (𝐵𝐴) ∈ 𝑆)
8 measvxrge0 30880 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵𝐴) ∈ 𝑆) → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
91, 7, 8syl2anc 579 . . . 4 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
10 elxrge0 12595 . . . . 5 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐵𝐴)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐵𝐴))))
1110simprbi 492 . . . 4 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝐵𝐴)))
129, 11syl 17 . . 3 (𝜑 → 0 ≤ (𝑀‘(𝐵𝐴)))
13 measvxrge0 30880 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
141, 5, 13syl2anc 579 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
15 elxrge0 12595 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
1615simplbi 493 . . . . 5 ((𝑀𝐴) ∈ (0[,]+∞) → (𝑀𝐴) ∈ ℝ*)
1714, 16syl 17 . . . 4 (𝜑 → (𝑀𝐴) ∈ ℝ*)
1810simplbi 493 . . . . 5 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
199, 18syl 17 . . . 4 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
20 xraddge02 30100 . . . 4 (((𝑀𝐴) ∈ ℝ* ∧ (𝑀‘(𝐵𝐴)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐵𝐴)) → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴)))))
2117, 19, 20syl2anc 579 . . 3 (𝜑 → (0 ≤ (𝑀‘(𝐵𝐴)) → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴)))))
2212, 21mpd 15 . 2 (𝜑 → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
23 prssi 4583 . . . . . 6 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} ⊆ 𝑆)
245, 7, 23syl2anc 579 . . . . 5 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑆)
25 prex 5141 . . . . . 6 {𝐴, (𝐵𝐴)} ∈ V
2625elpw 4384 . . . . 5 ({𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑆)
2724, 26sylibr 226 . . . 4 (𝜑 → {𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆)
28 prct 30072 . . . . 5 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} ≼ ω)
295, 7, 28syl2anc 579 . . . 4 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
30 disjdifprg 29965 . . . . . 6 ((𝐴𝑆𝐵𝑆) → Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦)
315, 4, 30syl2anc 579 . . . . 5 (𝜑Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦)
32 prcom 4498 . . . . . . 7 {(𝐵𝐴), 𝐴} = {𝐴, (𝐵𝐴)}
3332a1i 11 . . . . . 6 (𝜑 → {(𝐵𝐴), 𝐴} = {𝐴, (𝐵𝐴)})
3433disjeq1d 4862 . . . . 5 (𝜑 → (Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
3531, 34mpbid 224 . . . 4 (𝜑Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
36 measvun 30884 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ {𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑀 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦))
371, 27, 29, 35, 36syl112anc 1442 . . 3 (𝜑 → (𝑀 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦))
38 uniprg 4685 . . . . . 6 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
395, 7, 38syl2anc 579 . . . . 5 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
40 measssd.4 . . . . . 6 (𝜑𝐴𝐵)
41 undif 4272 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
4240, 41sylib 210 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
4339, 42eqtrd 2813 . . . 4 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
4443fveq2d 6450 . . 3 (𝜑 → (𝑀 {𝐴, (𝐵𝐴)}) = (𝑀𝐵))
45 fveq2 6446 . . . . 5 (𝑦 = 𝐴 → (𝑀𝑦) = (𝑀𝐴))
4645adantl 475 . . . 4 ((𝜑𝑦 = 𝐴) → (𝑀𝑦) = (𝑀𝐴))
47 fveq2 6446 . . . . 5 (𝑦 = (𝐵𝐴) → (𝑀𝑦) = (𝑀‘(𝐵𝐴)))
4847adantl 475 . . . 4 ((𝜑𝑦 = (𝐵𝐴)) → (𝑀𝑦) = (𝑀‘(𝐵𝐴)))
49 eqimss 3875 . . . . . . . . . 10 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
50 ssdifeq0 4274 . . . . . . . . . 10 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
5149, 50sylib 210 . . . . . . . . 9 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
5251adantl 475 . . . . . . . 8 ((𝜑𝐴 = (𝐵𝐴)) → 𝐴 = ∅)
5352fveq2d 6450 . . . . . . 7 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀𝐴) = (𝑀‘∅))
54 measvnul 30881 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
551, 54syl 17 . . . . . . . 8 (𝜑 → (𝑀‘∅) = 0)
5655adantr 474 . . . . . . 7 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀‘∅) = 0)
5753, 56eqtrd 2813 . . . . . 6 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀𝐴) = 0)
5857orcd 862 . . . . 5 ((𝜑𝐴 = (𝐵𝐴)) → ((𝑀𝐴) = 0 ∨ (𝑀𝐴) = +∞))
5958ex 403 . . . 4 (𝜑 → (𝐴 = (𝐵𝐴) → ((𝑀𝐴) = 0 ∨ (𝑀𝐴) = +∞)))
6046, 48, 5, 7, 14, 9, 59esumpr2 30741 . . 3 (𝜑 → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
6137, 44, 603eqtr3d 2821 . 2 (𝜑 → (𝑀𝐵) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
6222, 61breqtrrd 4914 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  wo 836   = wceq 1601  wcel 2106  cdif 3788  cun 3789  wss 3791  c0 4140  𝒫 cpw 4378  {cpr 4399   cuni 4671  Disj wdisj 4854   class class class wbr 4886  ran crn 5356  cfv 6135  (class class class)co 6922  ωcom 7343  cdom 8239  0cc0 10272  +∞cpnf 10408  *cxr 10410  cle 10412   +𝑒 cxad 12255  [,]cicc 12490  Σ*cesum 30701  sigAlgebracsiga 30782  measurescmeas 30870
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2054  ax-8 2108  ax-9 2115  ax-10 2134  ax-11 2149  ax-12 2162  ax-13 2333  ax-ext 2753  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138  ax-un 7226  ax-inf2 8835  ax-ac2 9620  ax-cnex 10328  ax-resscn 10329  ax-1cn 10330  ax-icn 10331  ax-addcl 10332  ax-addrcl 10333  ax-mulcl 10334  ax-mulrcl 10335  ax-mulcom 10336  ax-addass 10337  ax-mulass 10338  ax-distr 10339  ax-i2m1 10340  ax-1ne0 10341  ax-1rid 10342  ax-rnegex 10343  ax-rrecex 10344  ax-cnre 10345  ax-pre-lttri 10346  ax-pre-lttrn 10347  ax-pre-ltadd 10348  ax-pre-mulgt0 10349  ax-pre-sup 10350  ax-addf 10351  ax-mulf 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-fal 1615  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2550  df-eu 2586  df-clab 2763  df-cleq 2769  df-clel 2773  df-nfc 2920  df-ne 2969  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3399  df-sbc 3652  df-csb 3751  df-dif 3794  df-un 3796  df-in 3798  df-ss 3805  df-pss 3807  df-nul 4141  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4672  df-int 4711  df-iun 4755  df-iin 4756  df-disj 4855  df-br 4887  df-opab 4949  df-mpt 4966  df-tr 4988  df-id 5261  df-eprel 5266  df-po 5274  df-so 5275  df-fr 5314  df-se 5315  df-we 5316  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-pred 5933  df-ord 5979  df-on 5980  df-lim 5981  df-suc 5982  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-isom 6144  df-riota 6883  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174  df-om 7344  df-1st 7445  df-2nd 7446  df-supp 7577  df-wrecs 7689  df-recs 7751  df-rdg 7789  df-1o 7843  df-2o 7844  df-oadd 7847  df-er 8026  df-map 8142  df-pm 8143  df-ixp 8195  df-en 8242  df-dom 8243  df-sdom 8244  df-fin 8245  df-fsupp 8564  df-fi 8605  df-sup 8636  df-inf 8637  df-oi 8704  df-card 9098  df-acn 9101  df-ac 9272  df-cda 9325  df-pnf 10413  df-mnf 10414  df-xr 10415  df-ltxr 10416  df-le 10417  df-sub 10608  df-neg 10609  df-div 11033  df-nn 11375  df-2 11438  df-3 11439  df-4 11440  df-5 11441  df-6 11442  df-7 11443  df-8 11444  df-9 11445  df-n0 11643  df-z 11729  df-dec 11846  df-uz 11993  df-q 12096  df-rp 12138  df-xneg 12257  df-xadd 12258  df-xmul 12259  df-ioo 12491  df-ioc 12492  df-ico 12493  df-icc 12494  df-fz 12644  df-fzo 12785  df-fl 12912  df-mod 12988  df-seq 13120  df-exp 13179  df-fac 13379  df-bc 13408  df-hash 13436  df-shft 14214  df-cj 14246  df-re 14247  df-im 14248  df-sqrt 14382  df-abs 14383  df-limsup 14610  df-clim 14627  df-rlim 14628  df-sum 14825  df-ef 15200  df-sin 15202  df-cos 15203  df-pi 15205  df-struct 16257  df-ndx 16258  df-slot 16259  df-base 16261  df-sets 16262  df-ress 16263  df-plusg 16351  df-mulr 16352  df-starv 16353  df-sca 16354  df-vsca 16355  df-ip 16356  df-tset 16357  df-ple 16358  df-ds 16360  df-unif 16361  df-hom 16362  df-cco 16363  df-rest 16469  df-topn 16470  df-0g 16488  df-gsum 16489  df-topgen 16490  df-pt 16491  df-prds 16494  df-ordt 16547  df-xrs 16548  df-qtop 16553  df-imas 16554  df-xps 16556  df-mre 16632  df-mrc 16633  df-acs 16635  df-ps 17586  df-tsr 17587  df-plusf 17627  df-mgm 17628  df-sgrp 17670  df-mnd 17681  df-mhm 17721  df-submnd 17722  df-grp 17812  df-minusg 17813  df-sbg 17814  df-mulg 17928  df-subg 17975  df-cntz 18133  df-cmn 18581  df-abl 18582  df-mgp 18877  df-ur 18889  df-ring 18936  df-cring 18937  df-subrg 19170  df-abv 19209  df-lmod 19257  df-scaf 19258  df-sra 19569  df-rgmod 19570  df-psmet 20134  df-xmet 20135  df-met 20136  df-bl 20137  df-mopn 20138  df-fbas 20139  df-fg 20140  df-cnfld 20143  df-top 21106  df-topon 21123  df-topsp 21145  df-bases 21158  df-cld 21231  df-ntr 21232  df-cls 21233  df-nei 21310  df-lp 21348  df-perf 21349  df-cn 21439  df-cnp 21440  df-haus 21527  df-tx 21774  df-hmeo 21967  df-fil 22058  df-fm 22150  df-flim 22151  df-flf 22152  df-tmd 22284  df-tgp 22285  df-tsms 22338  df-trg 22371  df-xms 22533  df-ms 22534  df-tms 22535  df-nm 22795  df-ngp 22796  df-nrg 22798  df-nlm 22799  df-ii 23088  df-cncf 23089  df-limc 24067  df-dv 24068  df-log 24740  df-esum 30702  df-siga 30783  df-meas 30871
This theorem is referenced by:  measiun  30893  aean  30919  sibfinima  31013  prob01  31088  probinc  31096  probmeasb  31105  cndprob01  31110  dstfrvinc  31151
  Copyright terms: Public domain W3C validator