Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measssd Structured version   Visualization version   GIF version

Theorem measssd 32183
Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.)
Hypotheses
Ref Expression
measssd.1 (𝜑𝑀 ∈ (measures‘𝑆))
measssd.2 (𝜑𝐴𝑆)
measssd.3 (𝜑𝐵𝑆)
measssd.4 (𝜑𝐴𝐵)
Assertion
Ref Expression
measssd (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))

Proof of Theorem measssd
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 measssd.1 . . . . 5 (𝜑𝑀 ∈ (measures‘𝑆))
2 measbase 32165 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
31, 2syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
4 measssd.3 . . . . . 6 (𝜑𝐵𝑆)
5 measssd.2 . . . . . 6 (𝜑𝐴𝑆)
6 difelsiga 32101 . . . . . 6 ((𝑆 ran sigAlgebra ∧ 𝐵𝑆𝐴𝑆) → (𝐵𝐴) ∈ 𝑆)
73, 4, 5, 6syl3anc 1370 . . . . 5 (𝜑 → (𝐵𝐴) ∈ 𝑆)
8 measvxrge0 32173 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵𝐴) ∈ 𝑆) → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
91, 7, 8syl2anc 584 . . . 4 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ (0[,]+∞))
10 elxrge0 13189 . . . . 5 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐵𝐴)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐵𝐴))))
1110simprbi 497 . . . 4 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝐵𝐴)))
129, 11syl 17 . . 3 (𝜑 → 0 ≤ (𝑀‘(𝐵𝐴)))
13 measvxrge0 32173 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴𝑆) → (𝑀𝐴) ∈ (0[,]+∞))
141, 5, 13syl2anc 584 . . . . 5 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
15 elxrge0 13189 . . . . . 6 ((𝑀𝐴) ∈ (0[,]+∞) ↔ ((𝑀𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀𝐴)))
1615simplbi 498 . . . . 5 ((𝑀𝐴) ∈ (0[,]+∞) → (𝑀𝐴) ∈ ℝ*)
1714, 16syl 17 . . . 4 (𝜑 → (𝑀𝐴) ∈ ℝ*)
1810simplbi 498 . . . . 5 ((𝑀‘(𝐵𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
199, 18syl 17 . . . 4 (𝜑 → (𝑀‘(𝐵𝐴)) ∈ ℝ*)
20 xraddge02 31079 . . . 4 (((𝑀𝐴) ∈ ℝ* ∧ (𝑀‘(𝐵𝐴)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐵𝐴)) → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴)))))
2117, 19, 20syl2anc 584 . . 3 (𝜑 → (0 ≤ (𝑀‘(𝐵𝐴)) → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴)))))
2212, 21mpd 15 . 2 (𝜑 → (𝑀𝐴) ≤ ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
23 prssi 4754 . . . . . 6 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} ⊆ 𝑆)
245, 7, 23syl2anc 584 . . . . 5 (𝜑 → {𝐴, (𝐵𝐴)} ⊆ 𝑆)
25 prex 5355 . . . . . 6 {𝐴, (𝐵𝐴)} ∈ V
2625elpw 4537 . . . . 5 ({𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆 ↔ {𝐴, (𝐵𝐴)} ⊆ 𝑆)
2724, 26sylibr 233 . . . 4 (𝜑 → {𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆)
28 prct 31049 . . . . 5 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} ≼ ω)
295, 7, 28syl2anc 584 . . . 4 (𝜑 → {𝐴, (𝐵𝐴)} ≼ ω)
30 disjdifprg 30914 . . . . . 6 ((𝐴𝑆𝐵𝑆) → Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦)
315, 4, 30syl2anc 584 . . . . 5 (𝜑Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦)
32 prcom 4668 . . . . . . 7 {(𝐵𝐴), 𝐴} = {𝐴, (𝐵𝐴)}
3332a1i 11 . . . . . 6 (𝜑 → {(𝐵𝐴), 𝐴} = {𝐴, (𝐵𝐴)})
3433disjeq1d 5047 . . . . 5 (𝜑 → (Disj 𝑦 ∈ {(𝐵𝐴), 𝐴}𝑦Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦))
3531, 34mpbid 231 . . . 4 (𝜑Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)
36 measvun 32177 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ {𝐴, (𝐵𝐴)} ∈ 𝒫 𝑆 ∧ ({𝐴, (𝐵𝐴)} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, (𝐵𝐴)}𝑦)) → (𝑀 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦))
371, 27, 29, 35, 36syl112anc 1373 . . 3 (𝜑 → (𝑀 {𝐴, (𝐵𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦))
38 uniprg 4856 . . . . . 6 ((𝐴𝑆 ∧ (𝐵𝐴) ∈ 𝑆) → {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
395, 7, 38syl2anc 584 . . . . 5 (𝜑 {𝐴, (𝐵𝐴)} = (𝐴 ∪ (𝐵𝐴)))
40 measssd.4 . . . . . 6 (𝜑𝐴𝐵)
41 undif 4415 . . . . . 6 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
4240, 41sylib 217 . . . . 5 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
4339, 42eqtrd 2778 . . . 4 (𝜑 {𝐴, (𝐵𝐴)} = 𝐵)
4443fveq2d 6778 . . 3 (𝜑 → (𝑀 {𝐴, (𝐵𝐴)}) = (𝑀𝐵))
45 fveq2 6774 . . . . 5 (𝑦 = 𝐴 → (𝑀𝑦) = (𝑀𝐴))
4645adantl 482 . . . 4 ((𝜑𝑦 = 𝐴) → (𝑀𝑦) = (𝑀𝐴))
47 fveq2 6774 . . . . 5 (𝑦 = (𝐵𝐴) → (𝑀𝑦) = (𝑀‘(𝐵𝐴)))
4847adantl 482 . . . 4 ((𝜑𝑦 = (𝐵𝐴)) → (𝑀𝑦) = (𝑀‘(𝐵𝐴)))
49 eqimss 3977 . . . . . . . . . 10 (𝐴 = (𝐵𝐴) → 𝐴 ⊆ (𝐵𝐴))
50 ssdifeq0 4417 . . . . . . . . . 10 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
5149, 50sylib 217 . . . . . . . . 9 (𝐴 = (𝐵𝐴) → 𝐴 = ∅)
5251adantl 482 . . . . . . . 8 ((𝜑𝐴 = (𝐵𝐴)) → 𝐴 = ∅)
5352fveq2d 6778 . . . . . . 7 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀𝐴) = (𝑀‘∅))
54 measvnul 32174 . . . . . . . . 9 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
551, 54syl 17 . . . . . . . 8 (𝜑 → (𝑀‘∅) = 0)
5655adantr 481 . . . . . . 7 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀‘∅) = 0)
5753, 56eqtrd 2778 . . . . . 6 ((𝜑𝐴 = (𝐵𝐴)) → (𝑀𝐴) = 0)
5857orcd 870 . . . . 5 ((𝜑𝐴 = (𝐵𝐴)) → ((𝑀𝐴) = 0 ∨ (𝑀𝐴) = +∞))
5958ex 413 . . . 4 (𝜑 → (𝐴 = (𝐵𝐴) → ((𝑀𝐴) = 0 ∨ (𝑀𝐴) = +∞)))
6046, 48, 5, 7, 14, 9, 59esumpr2 32035 . . 3 (𝜑 → Σ*𝑦 ∈ {𝐴, (𝐵𝐴)} (𝑀𝑦) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
6137, 44, 603eqtr3d 2786 . 2 (𝜑 → (𝑀𝐵) = ((𝑀𝐴) +𝑒 (𝑀‘(𝐵𝐴))))
6222, 61breqtrrd 5102 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844   = wceq 1539  wcel 2106  cdif 3884  cun 3885  wss 3887  c0 4256  𝒫 cpw 4533  {cpr 4563   cuni 4839  Disj wdisj 5039   class class class wbr 5074  ran crn 5590  cfv 6433  (class class class)co 7275  ωcom 7712  cdom 8731  0cc0 10871  +∞cpnf 11006  *cxr 11008  cle 11010   +𝑒 cxad 12846  [,]cicc 13082  Σ*cesum 31995  sigAlgebracsiga 32076  measurescmeas 32163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-ac2 10219  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-acn 9700  df-ac 9872  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-sum 15398  df-ef 15777  df-sin 15779  df-cos 15780  df-pi 15782  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-ordt 17212  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-ps 18284  df-tsr 18285  df-plusf 18325  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-ring 19785  df-cring 19786  df-subrg 20022  df-abv 20077  df-lmod 20125  df-scaf 20126  df-sra 20434  df-rgmod 20435  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-tmd 23223  df-tgp 23224  df-tsms 23278  df-trg 23311  df-xms 23473  df-ms 23474  df-tms 23475  df-nm 23738  df-ngp 23739  df-nrg 23741  df-nlm 23742  df-ii 24040  df-cncf 24041  df-limc 25030  df-dv 25031  df-log 25712  df-esum 31996  df-siga 32077  df-meas 32164
This theorem is referenced by:  measiun  32186  aean  32212  sibfinima  32306  prob01  32380  probinc  32388  probmeasb  32397  cndprob01  32402  dstfrvinc  32443
  Copyright terms: Public domain W3C validator