| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measssd | Structured version Visualization version GIF version | ||
| Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
| Ref | Expression |
|---|---|
| measssd.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
| measssd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| measssd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| measssd.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
| Ref | Expression |
|---|---|
| measssd | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | measssd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
| 2 | measbase 34194 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
| 4 | measssd.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
| 5 | measssd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
| 6 | difelsiga 34130 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
| 7 | 3, 4, 5, 6 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
| 8 | measvxrge0 34202 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) | |
| 9 | 1, 7, 8 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
| 10 | elxrge0 13425 | . . . . 5 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐵 ∖ 𝐴)))) | |
| 11 | 10 | simprbi 496 | . . . 4 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝐵 ∖ 𝐴))) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑀‘(𝐵 ∖ 𝐴))) |
| 13 | measvxrge0 34202 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
| 14 | 1, 5, 13 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| 15 | elxrge0 13425 | . . . . . 6 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) ↔ ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) | |
| 16 | 15 | simplbi 497 | . . . . 5 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) → (𝑀‘𝐴) ∈ ℝ*) |
| 17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
| 18 | 10 | simplbi 497 | . . . . 5 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
| 19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
| 20 | xraddge02 32687 | . . . 4 ⊢ (((𝑀‘𝐴) ∈ ℝ* ∧ (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐵 ∖ 𝐴)) → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))))) | |
| 21 | 17, 19, 20 | syl2anc 584 | . . 3 ⊢ (𝜑 → (0 ≤ (𝑀‘(𝐵 ∖ 𝐴)) → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))))) |
| 22 | 12, 21 | mpd 15 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
| 23 | prssi 4788 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) | |
| 24 | 5, 7, 23 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) |
| 25 | prex 5395 | . . . . . 6 ⊢ {𝐴, (𝐵 ∖ 𝐴)} ∈ V | |
| 26 | 25 | elpw 4570 | . . . . 5 ⊢ ({𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆 ↔ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) |
| 27 | 24, 26 | sylibr 234 | . . . 4 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆) |
| 28 | prct 32645 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) | |
| 29 | 5, 7, 28 | syl2anc 584 | . . . 4 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) |
| 30 | disjdifprg 32511 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦) | |
| 31 | 5, 4, 30 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦) |
| 32 | prcom 4699 | . . . . . . 7 ⊢ {(𝐵 ∖ 𝐴), 𝐴} = {𝐴, (𝐵 ∖ 𝐴)} | |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {(𝐵 ∖ 𝐴), 𝐴} = {𝐴, (𝐵 ∖ 𝐴)}) |
| 34 | 33 | disjeq1d 5085 | . . . . 5 ⊢ (𝜑 → (Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦 ↔ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) |
| 35 | 31, 34 | mpbid 232 | . . . 4 ⊢ (𝜑 → Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦) |
| 36 | measvun 34206 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦)) | |
| 37 | 1, 27, 29, 35, 36 | syl112anc 1376 | . . 3 ⊢ (𝜑 → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦)) |
| 38 | uniprg 4890 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) | |
| 39 | 5, 7, 38 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
| 40 | measssd.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
| 41 | undif 4448 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
| 42 | 40, 41 | sylib 218 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
| 43 | 39, 42 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, (𝐵 ∖ 𝐴)} = 𝐵) |
| 44 | 43 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = (𝑀‘𝐵)) |
| 45 | fveq2 6861 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘𝑦) = (𝑀‘𝐴)) | |
| 46 | 45 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝑀‘𝑦) = (𝑀‘𝐴)) |
| 47 | fveq2 6861 | . . . . 5 ⊢ (𝑦 = (𝐵 ∖ 𝐴) → (𝑀‘𝑦) = (𝑀‘(𝐵 ∖ 𝐴))) | |
| 48 | 47 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = (𝐵 ∖ 𝐴)) → (𝑀‘𝑦) = (𝑀‘(𝐵 ∖ 𝐴))) |
| 49 | eqimss 4008 | . . . . . . . . . 10 ⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 ⊆ (𝐵 ∖ 𝐴)) | |
| 50 | ssdifeq0 4453 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | |
| 51 | 49, 50 | sylib 218 | . . . . . . . . 9 ⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
| 52 | 51 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → 𝐴 = ∅) |
| 53 | 52 | fveq2d 6865 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘𝐴) = (𝑀‘∅)) |
| 54 | measvnul 34203 | . . . . . . . . 9 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
| 55 | 1, 54 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) |
| 56 | 55 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘∅) = 0) |
| 57 | 53, 56 | eqtrd 2765 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘𝐴) = 0) |
| 58 | 57 | orcd 873 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → ((𝑀‘𝐴) = 0 ∨ (𝑀‘𝐴) = +∞)) |
| 59 | 58 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐴 = (𝐵 ∖ 𝐴) → ((𝑀‘𝐴) = 0 ∨ (𝑀‘𝐴) = +∞))) |
| 60 | 46, 48, 5, 7, 14, 9, 59 | esumpr2 34064 | . . 3 ⊢ (𝜑 → Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
| 61 | 37, 44, 60 | 3eqtr3d 2773 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
| 62 | 22, 61 | breqtrrd 5138 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {cpr 4594 ∪ cuni 4874 Disj wdisj 5077 class class class wbr 5110 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ≼ cdom 8919 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 +𝑒 cxad 13077 [,]cicc 13316 Σ*cesum 34024 sigAlgebracsiga 34105 measurescmeas 34192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-ordt 17471 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-ps 18532 df-tsr 18533 df-plusf 18573 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-abv 20725 df-lmod 20775 df-scaf 20776 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-tmd 23966 df-tgp 23967 df-tsms 24021 df-trg 24054 df-xms 24215 df-ms 24216 df-tms 24217 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 df-ii 24777 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-esum 34025 df-siga 34106 df-meas 34193 |
| This theorem is referenced by: measiun 34215 aean 34241 sibfinima 34337 prob01 34411 probinc 34419 probmeasb 34428 cndprob01 34433 dstfrvinc 34475 |
| Copyright terms: Public domain | W3C validator |