Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > measssd | Structured version Visualization version GIF version |
Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016.) |
Ref | Expression |
---|---|
measssd.1 | ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) |
measssd.2 | ⊢ (𝜑 → 𝐴 ∈ 𝑆) |
measssd.3 | ⊢ (𝜑 → 𝐵 ∈ 𝑆) |
measssd.4 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
measssd | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | measssd.1 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (measures‘𝑆)) | |
2 | measbase 32065 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
3 | 1, 2 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ ∪ ran sigAlgebra) |
4 | measssd.3 | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ 𝑆) | |
5 | measssd.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝑆) | |
6 | difelsiga 32001 | . . . . . 6 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆) → (𝐵 ∖ 𝐴) ∈ 𝑆) | |
7 | 3, 4, 5, 6 | syl3anc 1369 | . . . . 5 ⊢ (𝜑 → (𝐵 ∖ 𝐴) ∈ 𝑆) |
8 | measvxrge0 32073 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) | |
9 | 1, 7, 8 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞)) |
10 | elxrge0 13118 | . . . . 5 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) ↔ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ* ∧ 0 ≤ (𝑀‘(𝐵 ∖ 𝐴)))) | |
11 | 10 | simprbi 496 | . . . 4 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) → 0 ≤ (𝑀‘(𝐵 ∖ 𝐴))) |
12 | 9, 11 | syl 17 | . . 3 ⊢ (𝜑 → 0 ≤ (𝑀‘(𝐵 ∖ 𝐴))) |
13 | measvxrge0 32073 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐴 ∈ 𝑆) → (𝑀‘𝐴) ∈ (0[,]+∞)) | |
14 | 1, 5, 13 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
15 | elxrge0 13118 | . . . . . 6 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) ↔ ((𝑀‘𝐴) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝐴))) | |
16 | 15 | simplbi 497 | . . . . 5 ⊢ ((𝑀‘𝐴) ∈ (0[,]+∞) → (𝑀‘𝐴) ∈ ℝ*) |
17 | 14, 16 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) |
18 | 10 | simplbi 497 | . . . . 5 ⊢ ((𝑀‘(𝐵 ∖ 𝐴)) ∈ (0[,]+∞) → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
19 | 9, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) |
20 | xraddge02 30981 | . . . 4 ⊢ (((𝑀‘𝐴) ∈ ℝ* ∧ (𝑀‘(𝐵 ∖ 𝐴)) ∈ ℝ*) → (0 ≤ (𝑀‘(𝐵 ∖ 𝐴)) → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))))) | |
21 | 17, 19, 20 | syl2anc 583 | . . 3 ⊢ (𝜑 → (0 ≤ (𝑀‘(𝐵 ∖ 𝐴)) → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴))))) |
22 | 12, 21 | mpd 15 | . 2 ⊢ (𝜑 → (𝑀‘𝐴) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
23 | prssi 4751 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) | |
24 | 5, 7, 23 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) |
25 | prex 5350 | . . . . . 6 ⊢ {𝐴, (𝐵 ∖ 𝐴)} ∈ V | |
26 | 25 | elpw 4534 | . . . . 5 ⊢ ({𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆 ↔ {𝐴, (𝐵 ∖ 𝐴)} ⊆ 𝑆) |
27 | 24, 26 | sylibr 233 | . . . 4 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆) |
28 | prct 30951 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) | |
29 | 5, 7, 28 | syl2anc 583 | . . . 4 ⊢ (𝜑 → {𝐴, (𝐵 ∖ 𝐴)} ≼ ω) |
30 | disjdifprg 30815 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦) | |
31 | 5, 4, 30 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦) |
32 | prcom 4665 | . . . . . . 7 ⊢ {(𝐵 ∖ 𝐴), 𝐴} = {𝐴, (𝐵 ∖ 𝐴)} | |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {(𝐵 ∖ 𝐴), 𝐴} = {𝐴, (𝐵 ∖ 𝐴)}) |
34 | 33 | disjeq1d 5043 | . . . . 5 ⊢ (𝜑 → (Disj 𝑦 ∈ {(𝐵 ∖ 𝐴), 𝐴}𝑦 ↔ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) |
35 | 31, 34 | mpbid 231 | . . . 4 ⊢ (𝜑 → Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦) |
36 | measvun 32077 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐴, (𝐵 ∖ 𝐴)} ∈ 𝒫 𝑆 ∧ ({𝐴, (𝐵 ∖ 𝐴)} ≼ ω ∧ Disj 𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)}𝑦)) → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦)) | |
37 | 1, 27, 29, 35, 36 | syl112anc 1372 | . . 3 ⊢ (𝜑 → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦)) |
38 | uniprg 4853 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑆 ∧ (𝐵 ∖ 𝐴) ∈ 𝑆) → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) | |
39 | 5, 7, 38 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → ∪ {𝐴, (𝐵 ∖ 𝐴)} = (𝐴 ∪ (𝐵 ∖ 𝐴))) |
40 | measssd.4 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
41 | undif 4412 | . . . . . 6 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) | |
42 | 40, 41 | sylib 217 | . . . . 5 ⊢ (𝜑 → (𝐴 ∪ (𝐵 ∖ 𝐴)) = 𝐵) |
43 | 39, 42 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ∪ {𝐴, (𝐵 ∖ 𝐴)} = 𝐵) |
44 | 43 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝑀‘∪ {𝐴, (𝐵 ∖ 𝐴)}) = (𝑀‘𝐵)) |
45 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑀‘𝑦) = (𝑀‘𝐴)) | |
46 | 45 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = 𝐴) → (𝑀‘𝑦) = (𝑀‘𝐴)) |
47 | fveq2 6756 | . . . . 5 ⊢ (𝑦 = (𝐵 ∖ 𝐴) → (𝑀‘𝑦) = (𝑀‘(𝐵 ∖ 𝐴))) | |
48 | 47 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 = (𝐵 ∖ 𝐴)) → (𝑀‘𝑦) = (𝑀‘(𝐵 ∖ 𝐴))) |
49 | eqimss 3973 | . . . . . . . . . 10 ⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 ⊆ (𝐵 ∖ 𝐴)) | |
50 | ssdifeq0 4414 | . . . . . . . . . 10 ⊢ (𝐴 ⊆ (𝐵 ∖ 𝐴) ↔ 𝐴 = ∅) | |
51 | 49, 50 | sylib 217 | . . . . . . . . 9 ⊢ (𝐴 = (𝐵 ∖ 𝐴) → 𝐴 = ∅) |
52 | 51 | adantl 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → 𝐴 = ∅) |
53 | 52 | fveq2d 6760 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘𝐴) = (𝑀‘∅)) |
54 | measvnul 32074 | . . . . . . . . 9 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
55 | 1, 54 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → (𝑀‘∅) = 0) |
56 | 55 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘∅) = 0) |
57 | 53, 56 | eqtrd 2778 | . . . . . 6 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → (𝑀‘𝐴) = 0) |
58 | 57 | orcd 869 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 = (𝐵 ∖ 𝐴)) → ((𝑀‘𝐴) = 0 ∨ (𝑀‘𝐴) = +∞)) |
59 | 58 | ex 412 | . . . 4 ⊢ (𝜑 → (𝐴 = (𝐵 ∖ 𝐴) → ((𝑀‘𝐴) = 0 ∨ (𝑀‘𝐴) = +∞))) |
60 | 46, 48, 5, 7, 14, 9, 59 | esumpr2 31935 | . . 3 ⊢ (𝜑 → Σ*𝑦 ∈ {𝐴, (𝐵 ∖ 𝐴)} (𝑀‘𝑦) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
61 | 37, 44, 60 | 3eqtr3d 2786 | . 2 ⊢ (𝜑 → (𝑀‘𝐵) = ((𝑀‘𝐴) +𝑒 (𝑀‘(𝐵 ∖ 𝐴)))) |
62 | 22, 61 | breqtrrd 5098 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∨ wo 843 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ∅c0 4253 𝒫 cpw 4530 {cpr 4560 ∪ cuni 4836 Disj wdisj 5035 class class class wbr 5070 ran crn 5581 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ≼ cdom 8689 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 ≤ cle 10941 +𝑒 cxad 12775 [,]cicc 13011 Σ*cesum 31895 sigAlgebracsiga 31976 measurescmeas 32063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-fac 13916 df-bc 13945 df-hash 13973 df-shft 14706 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-limsup 15108 df-clim 15125 df-rlim 15126 df-sum 15326 df-ef 15705 df-sin 15707 df-cos 15708 df-pi 15710 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-ordt 17129 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-ps 18199 df-tsr 18200 df-plusf 18240 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 df-subrg 19937 df-abv 19992 df-lmod 20040 df-scaf 20041 df-sra 20349 df-rgmod 20350 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-fbas 20507 df-fg 20508 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cld 22078 df-ntr 22079 df-cls 22080 df-nei 22157 df-lp 22195 df-perf 22196 df-cn 22286 df-cnp 22287 df-haus 22374 df-tx 22621 df-hmeo 22814 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tmd 23131 df-tgp 23132 df-tsms 23186 df-trg 23219 df-xms 23381 df-ms 23382 df-tms 23383 df-nm 23644 df-ngp 23645 df-nrg 23647 df-nlm 23648 df-ii 23946 df-cncf 23947 df-limc 24935 df-dv 24936 df-log 25617 df-esum 31896 df-siga 31977 df-meas 32064 |
This theorem is referenced by: measiun 32086 aean 32112 sibfinima 32206 prob01 32280 probinc 32288 probmeasb 32297 cndprob01 32302 dstfrvinc 32343 |
Copyright terms: Public domain | W3C validator |