Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjun Structured version   Visualization version   GIF version

Theorem meadjun 46584
Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjun.m (𝜑𝑀 ∈ Meas)
meadjun.x 𝑆 = dom 𝑀
meadjun.a (𝜑𝐴𝑆)
meadjun.b (𝜑𝐵𝑆)
meadjun.dj (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
meadjun (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meadjun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13332 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 meadjun.m . . . . . . . . 9 (𝜑𝑀 ∈ Meas)
3 meadjun.x . . . . . . . . 9 𝑆 = dom 𝑀
42, 3meaf 46575 . . . . . . . 8 (𝜑𝑀:𝑆⟶(0[,]+∞))
5 meadjun.b . . . . . . . 8 (𝜑𝐵𝑆)
64, 5ffvelcdmd 7024 . . . . . . 7 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
71, 6sselid 3928 . . . . . 6 (𝜑 → (𝑀𝐵) ∈ ℝ*)
8 xaddlid 13143 . . . . . 6 ((𝑀𝐵) ∈ ℝ* → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
109eqcomd 2739 . . . 4 (𝜑 → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
1110adantr 480 . . 3 ((𝜑𝐴 = ∅) → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
12 uneq1 4110 . . . . . 6 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
13 0un 4345 . . . . . . 7 (∅ ∪ 𝐵) = 𝐵
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (∅ ∪ 𝐵) = 𝐵)
1512, 14eqtrd 2768 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = 𝐵)
1615fveq2d 6832 . . . 4 (𝐴 = ∅ → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
1716adantl 481 . . 3 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
18 fveq2 6828 . . . . . 6 (𝐴 = ∅ → (𝑀𝐴) = (𝑀‘∅))
1918adantl 481 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀𝐴) = (𝑀‘∅))
202mea0 46576 . . . . . 6 (𝜑 → (𝑀‘∅) = 0)
2120adantr 480 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
2219, 21eqtrd 2768 . . . 4 ((𝜑𝐴 = ∅) → (𝑀𝐴) = 0)
2322oveq1d 7367 . . 3 ((𝜑𝐴 = ∅) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = (0 +𝑒 (𝑀𝐵)))
2411, 17, 233eqtr4d 2778 . 2 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
25 simpl 482 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
26 meadjun.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
2726ad2antrr 726 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴𝐵) = ∅)
28 inidm 4176 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
2928eqcomi 2742 . . . . . . . . . 10 𝐴 = (𝐴𝐴)
30 ineq2 4163 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
3129, 30eqtr2id 2781 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
3231adantl 481 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
33 neqne 2937 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
3433adantr 480 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅)
3532, 34eqnetrd 2996 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) ≠ ∅)
3635neneqd 2934 . . . . . 6 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3736adantll 714 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3827, 37pm2.65da 816 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵)
3938neqned 2936 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝐵)
40 meadjun.a . . . . . . . 8 (𝜑𝐴𝑆)
41 uniprg 4874 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
4240, 5, 41syl2anc 584 . . . . . . 7 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
4342eqcomd 2739 . . . . . 6 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
4443fveq2d 6832 . . . . 5 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4544adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4640, 5prssd 4773 . . . . . 6 (𝜑 → {𝐴, 𝐵} ⊆ 𝑆)
47 prfi 9215 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
48 isfinite 9549 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4948biimpi 216 . . . . . . . . 9 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
50 sdomdom 8909 . . . . . . . . 9 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
5149, 50syl 17 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
5247, 51ax-mp 5 . . . . . . 7 {𝐴, 𝐵} ≼ ω
5352a1i 11 . . . . . 6 (𝜑 → {𝐴, 𝐵} ≼ ω)
54 disjxsn 5087 . . . . . . . . . 10 Disj 𝑥 ∈ {𝐵}𝑥
5554a1i 11 . . . . . . . . 9 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐵}𝑥)
56 preq1 4685 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
57 dfsn2 4588 . . . . . . . . . . . . 13 {𝐵} = {𝐵, 𝐵}
5857eqcomi 2742 . . . . . . . . . . . 12 {𝐵, 𝐵} = {𝐵}
5958a1i 11 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
6056, 59eqtrd 2768 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
6160disjeq1d 5068 . . . . . . . . 9 (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥Disj 𝑥 ∈ {𝐵}𝑥))
6255, 61mpbird 257 . . . . . . . 8 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
6362adantl 481 . . . . . . 7 ((𝜑𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
64 simpl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑)
65 neqne 2937 . . . . . . . . 9 𝐴 = 𝐵𝐴𝐵)
6665adantl 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
6726adantr 480 . . . . . . . . 9 ((𝜑𝐴𝐵) → (𝐴𝐵) = ∅)
6840adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝑆)
695adantr 480 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵𝑆)
70 simpr 484 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
71 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
72 id 22 . . . . . . . . . . 11 (𝑥 = 𝐵𝑥 = 𝐵)
7371, 72disjprg 5089 . . . . . . . . . 10 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7468, 69, 70, 73syl3anc 1373 . . . . . . . . 9 ((𝜑𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7567, 74mpbird 257 . . . . . . . 8 ((𝜑𝐴𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7664, 66, 75syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7763, 76pm2.61dan 812 . . . . . 6 (𝜑Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
782, 3, 46, 53, 77meadjuni 46579 . . . . 5 (𝜑 → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
7978adantr 480 . . . 4 ((𝜑𝐴𝐵) → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
804, 40ffvelcdmd 7024 . . . . . . 7 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
8180adantr 480 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐴) ∈ (0[,]+∞))
826adantr 480 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ (0[,]+∞))
83 fveq2 6828 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
84 fveq2 6828 . . . . . 6 (𝑥 = 𝐵 → (𝑀𝑥) = (𝑀𝐵))
8568, 69, 81, 82, 83, 84, 70sge0pr 46516 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
864, 46fssresd 6695 . . . . . . . . 9 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
8786feqmptd 6896 . . . . . . . 8 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)))
88 fvres 6847 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀𝑥))
8988mpteq2ia 5188 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))
9089a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9187, 90eqtrd 2768 . . . . . . 7 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9291fveq2d 6832 . . . . . 6 (𝜑 → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
9392adantr 480 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
94 eqidd 2734 . . . . 5 ((𝜑𝐴𝐵) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9585, 93, 943eqtr4d 2778 . . . 4 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9645, 79, 953eqtrd 2772 . . 3 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9725, 39, 96syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9824, 97pm2.61dan 812 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  cun 3896  cin 3897  c0 4282  {csn 4575  {cpr 4577   cuni 4858  Disj wdisj 5060   class class class wbr 5093  cmpt 5174  dom cdm 5619  cres 5621  cfv 6486  (class class class)co 7352  ωcom 7802  cdom 8873  csdm 8874  Fincfn 8875  0cc0 11013  +∞cpnf 11150  *cxr 11152   +𝑒 cxad 13011  [,]cicc 13250  Σ^csumge0 46484  Meascmea 46571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-disj 5061  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-oi 9403  df-card 9839  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-2 12195  df-3 12196  df-n0 12389  df-z 12476  df-uz 12739  df-rp 12893  df-xadd 13014  df-ico 13253  df-icc 13254  df-fz 13410  df-fzo 13557  df-seq 13911  df-exp 13971  df-hash 14240  df-cj 15008  df-re 15009  df-im 15010  df-sqrt 15144  df-abs 15145  df-clim 15397  df-sum 15596  df-sumge0 46485  df-mea 46572
This theorem is referenced by:  meassle  46585  meaunle  46586  meadjunre  46598
  Copyright terms: Public domain W3C validator