Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjun Structured version   Visualization version   GIF version

Theorem meadjun 45164
Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjun.m (𝜑𝑀 ∈ Meas)
meadjun.x 𝑆 = dom 𝑀
meadjun.a (𝜑𝐴𝑆)
meadjun.b (𝜑𝐵𝑆)
meadjun.dj (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
meadjun (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meadjun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13403 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 meadjun.m . . . . . . . . 9 (𝜑𝑀 ∈ Meas)
3 meadjun.x . . . . . . . . 9 𝑆 = dom 𝑀
42, 3meaf 45155 . . . . . . . 8 (𝜑𝑀:𝑆⟶(0[,]+∞))
5 meadjun.b . . . . . . . 8 (𝜑𝐵𝑆)
64, 5ffvelcdmd 7084 . . . . . . 7 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
71, 6sselid 3979 . . . . . 6 (𝜑 → (𝑀𝐵) ∈ ℝ*)
8 xaddlid 13217 . . . . . 6 ((𝑀𝐵) ∈ ℝ* → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
109eqcomd 2738 . . . 4 (𝜑 → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
1110adantr 481 . . 3 ((𝜑𝐴 = ∅) → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
12 uneq1 4155 . . . . . 6 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
13 0un 4391 . . . . . . 7 (∅ ∪ 𝐵) = 𝐵
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (∅ ∪ 𝐵) = 𝐵)
1512, 14eqtrd 2772 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = 𝐵)
1615fveq2d 6892 . . . 4 (𝐴 = ∅ → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
1716adantl 482 . . 3 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
18 fveq2 6888 . . . . . 6 (𝐴 = ∅ → (𝑀𝐴) = (𝑀‘∅))
1918adantl 482 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀𝐴) = (𝑀‘∅))
202mea0 45156 . . . . . 6 (𝜑 → (𝑀‘∅) = 0)
2120adantr 481 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
2219, 21eqtrd 2772 . . . 4 ((𝜑𝐴 = ∅) → (𝑀𝐴) = 0)
2322oveq1d 7420 . . 3 ((𝜑𝐴 = ∅) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = (0 +𝑒 (𝑀𝐵)))
2411, 17, 233eqtr4d 2782 . 2 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
25 simpl 483 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
26 meadjun.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
2726ad2antrr 724 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴𝐵) = ∅)
28 inidm 4217 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
2928eqcomi 2741 . . . . . . . . . 10 𝐴 = (𝐴𝐴)
30 ineq2 4205 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
3129, 30eqtr2id 2785 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
3231adantl 482 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
33 neqne 2948 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
3433adantr 481 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅)
3532, 34eqnetrd 3008 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) ≠ ∅)
3635neneqd 2945 . . . . . 6 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3736adantll 712 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3827, 37pm2.65da 815 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵)
3938neqned 2947 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝐵)
40 meadjun.a . . . . . . . 8 (𝜑𝐴𝑆)
41 uniprg 4924 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
4240, 5, 41syl2anc 584 . . . . . . 7 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
4342eqcomd 2738 . . . . . 6 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
4443fveq2d 6892 . . . . 5 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4544adantr 481 . . . 4 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4640, 5prssd 4824 . . . . . 6 (𝜑 → {𝐴, 𝐵} ⊆ 𝑆)
47 prfi 9318 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
48 isfinite 9643 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4948biimpi 215 . . . . . . . . 9 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
50 sdomdom 8972 . . . . . . . . 9 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
5149, 50syl 17 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
5247, 51ax-mp 5 . . . . . . 7 {𝐴, 𝐵} ≼ ω
5352a1i 11 . . . . . 6 (𝜑 → {𝐴, 𝐵} ≼ ω)
54 disjxsn 5140 . . . . . . . . . 10 Disj 𝑥 ∈ {𝐵}𝑥
5554a1i 11 . . . . . . . . 9 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐵}𝑥)
56 preq1 4736 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
57 dfsn2 4640 . . . . . . . . . . . . 13 {𝐵} = {𝐵, 𝐵}
5857eqcomi 2741 . . . . . . . . . . . 12 {𝐵, 𝐵} = {𝐵}
5958a1i 11 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
6056, 59eqtrd 2772 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
6160disjeq1d 5120 . . . . . . . . 9 (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥Disj 𝑥 ∈ {𝐵}𝑥))
6255, 61mpbird 256 . . . . . . . 8 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
6362adantl 482 . . . . . . 7 ((𝜑𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
64 simpl 483 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑)
65 neqne 2948 . . . . . . . . 9 𝐴 = 𝐵𝐴𝐵)
6665adantl 482 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
6726adantr 481 . . . . . . . . 9 ((𝜑𝐴𝐵) → (𝐴𝐵) = ∅)
6840adantr 481 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝑆)
695adantr 481 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵𝑆)
70 simpr 485 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
71 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
72 id 22 . . . . . . . . . . 11 (𝑥 = 𝐵𝑥 = 𝐵)
7371, 72disjprg 5143 . . . . . . . . . 10 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7468, 69, 70, 73syl3anc 1371 . . . . . . . . 9 ((𝜑𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7567, 74mpbird 256 . . . . . . . 8 ((𝜑𝐴𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7664, 66, 75syl2anc 584 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7763, 76pm2.61dan 811 . . . . . 6 (𝜑Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
782, 3, 46, 53, 77meadjuni 45159 . . . . 5 (𝜑 → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
7978adantr 481 . . . 4 ((𝜑𝐴𝐵) → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
804, 40ffvelcdmd 7084 . . . . . . 7 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
8180adantr 481 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐴) ∈ (0[,]+∞))
826adantr 481 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ (0[,]+∞))
83 fveq2 6888 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
84 fveq2 6888 . . . . . 6 (𝑥 = 𝐵 → (𝑀𝑥) = (𝑀𝐵))
8568, 69, 81, 82, 83, 84, 70sge0pr 45096 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
864, 46fssresd 6755 . . . . . . . . 9 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
8786feqmptd 6957 . . . . . . . 8 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)))
88 fvres 6907 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀𝑥))
8988mpteq2ia 5250 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))
9089a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9187, 90eqtrd 2772 . . . . . . 7 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9291fveq2d 6892 . . . . . 6 (𝜑 → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
9392adantr 481 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
94 eqidd 2733 . . . . 5 ((𝜑𝐴𝐵) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9585, 93, 943eqtr4d 2782 . . . 4 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9645, 79, 953eqtrd 2776 . . 3 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9725, 39, 96syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9824, 97pm2.61dan 811 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2940  cun 3945  cin 3946  c0 4321  {csn 4627  {cpr 4629   cuni 4907  Disj wdisj 5112   class class class wbr 5147  cmpt 5230  dom cdm 5675  cres 5677  cfv 6540  (class class class)co 7405  ωcom 7851  cdom 8933  csdm 8934  Fincfn 8935  0cc0 11106  +∞cpnf 11241  *cxr 11243   +𝑒 cxad 13086  [,]cicc 13323  Σ^csumge0 45064  Meascmea 45151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-disj 5113  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-isom 6549  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-oi 9501  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-xadd 13089  df-ico 13326  df-icc 13327  df-fz 13481  df-fzo 13624  df-seq 13963  df-exp 14024  df-hash 14287  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-clim 15428  df-sum 15629  df-sumge0 45065  df-mea 45152
This theorem is referenced by:  meassle  45165  meaunle  45166  meadjunre  45178
  Copyright terms: Public domain W3C validator