Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjun Structured version   Visualization version   GIF version

Theorem meadjun 41193
Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjun.m (𝜑𝑀 ∈ Meas)
meadjun.x 𝑆 = dom 𝑀
meadjun.a (𝜑𝐴𝑆)
meadjun.b (𝜑𝐵𝑆)
meadjun.dj (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
meadjun (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meadjun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12460 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 meadjun.m . . . . . . . . 9 (𝜑𝑀 ∈ Meas)
3 meadjun.x . . . . . . . . 9 𝑆 = dom 𝑀
42, 3meaf 41184 . . . . . . . 8 (𝜑𝑀:𝑆⟶(0[,]+∞))
5 meadjun.b . . . . . . . 8 (𝜑𝐵𝑆)
64, 5ffvelrnd 6505 . . . . . . 7 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
71, 6sseldi 3750 . . . . . 6 (𝜑 → (𝑀𝐵) ∈ ℝ*)
8 xaddid2 12277 . . . . . 6 ((𝑀𝐵) ∈ ℝ* → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
109eqcomd 2777 . . . 4 (𝜑 → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
1110adantr 466 . . 3 ((𝜑𝐴 = ∅) → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
12 uneq1 3911 . . . . . 6 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
13 0un 39736 . . . . . . 7 (∅ ∪ 𝐵) = 𝐵
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (∅ ∪ 𝐵) = 𝐵)
1512, 14eqtrd 2805 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = 𝐵)
1615fveq2d 6337 . . . 4 (𝐴 = ∅ → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
1716adantl 467 . . 3 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
18 fveq2 6333 . . . . . 6 (𝐴 = ∅ → (𝑀𝐴) = (𝑀‘∅))
1918adantl 467 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀𝐴) = (𝑀‘∅))
202mea0 41185 . . . . . 6 (𝜑 → (𝑀‘∅) = 0)
2120adantr 466 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
2219, 21eqtrd 2805 . . . 4 ((𝜑𝐴 = ∅) → (𝑀𝐴) = 0)
2322oveq1d 6810 . . 3 ((𝜑𝐴 = ∅) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = (0 +𝑒 (𝑀𝐵)))
2411, 17, 233eqtr4d 2815 . 2 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
25 simpl 468 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
26 meadjun.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
2726ad2antrr 705 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴𝐵) = ∅)
28 inidm 3971 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
2928eqcomi 2780 . . . . . . . . . 10 𝐴 = (𝐴𝐴)
30 ineq2 3959 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
3129, 30syl5req 2818 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
3231adantl 467 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
33 neqne 2951 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
3433adantr 466 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅)
3532, 34eqnetrd 3010 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) ≠ ∅)
3635neneqd 2948 . . . . . 6 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3736adantll 693 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3827, 37pm2.65da 818 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵)
3938neqned 2950 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝐵)
40 meadjun.a . . . . . . . 8 (𝜑𝐴𝑆)
41 uniprg 4589 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
4240, 5, 41syl2anc 573 . . . . . . 7 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
4342eqcomd 2777 . . . . . 6 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
4443fveq2d 6337 . . . . 5 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4544adantr 466 . . . 4 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4640, 5prssd 4489 . . . . . 6 (𝜑 → {𝐴, 𝐵} ⊆ 𝑆)
47 prfi 8394 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
48 isfinite 8716 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4948biimpi 206 . . . . . . . . 9 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
50 sdomdom 8140 . . . . . . . . 9 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
5149, 50syl 17 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
5247, 51ax-mp 5 . . . . . . 7 {𝐴, 𝐵} ≼ ω
5352a1i 11 . . . . . 6 (𝜑 → {𝐴, 𝐵} ≼ ω)
54 disjxsn 4781 . . . . . . . . . 10 Disj 𝑥 ∈ {𝐵}𝑥
5554a1i 11 . . . . . . . . 9 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐵}𝑥)
56 preq1 4405 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
57 dfsn2 4330 . . . . . . . . . . . . 13 {𝐵} = {𝐵, 𝐵}
5857eqcomi 2780 . . . . . . . . . . . 12 {𝐵, 𝐵} = {𝐵}
5958a1i 11 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
6056, 59eqtrd 2805 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
6160disjeq1d 4763 . . . . . . . . 9 (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥Disj 𝑥 ∈ {𝐵}𝑥))
6255, 61mpbird 247 . . . . . . . 8 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
6362adantl 467 . . . . . . 7 ((𝜑𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
64 simpl 468 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑)
65 neqne 2951 . . . . . . . . 9 𝐴 = 𝐵𝐴𝐵)
6665adantl 467 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
6726adantr 466 . . . . . . . . 9 ((𝜑𝐴𝐵) → (𝐴𝐵) = ∅)
6840adantr 466 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝑆)
695adantr 466 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵𝑆)
70 simpr 471 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
71 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
72 id 22 . . . . . . . . . . 11 (𝑥 = 𝐵𝑥 = 𝐵)
7371, 72disjprg 4783 . . . . . . . . . 10 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7468, 69, 70, 73syl3anc 1476 . . . . . . . . 9 ((𝜑𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7567, 74mpbird 247 . . . . . . . 8 ((𝜑𝐴𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7664, 66, 75syl2anc 573 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7763, 76pm2.61dan 814 . . . . . 6 (𝜑Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
782, 3, 46, 53, 77meadjuni 41188 . . . . 5 (𝜑 → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
7978adantr 466 . . . 4 ((𝜑𝐴𝐵) → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
804, 40ffvelrnd 6505 . . . . . . 7 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
8180adantr 466 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐴) ∈ (0[,]+∞))
826adantr 466 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ (0[,]+∞))
83 fveq2 6333 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
84 fveq2 6333 . . . . . 6 (𝑥 = 𝐵 → (𝑀𝑥) = (𝑀𝐵))
8568, 69, 81, 82, 83, 84, 70sge0pr 41125 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
864, 46fssresd 6212 . . . . . . . . 9 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
8786feqmptd 6393 . . . . . . . 8 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)))
88 fvres 6350 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀𝑥))
8988mpteq2ia 4875 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))
9089a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9187, 90eqtrd 2805 . . . . . . 7 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9291fveq2d 6337 . . . . . 6 (𝜑 → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
9392adantr 466 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
94 eqidd 2772 . . . . 5 ((𝜑𝐴𝐵) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9585, 93, 943eqtr4d 2815 . . . 4 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9645, 79, 953eqtrd 2809 . . 3 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9725, 39, 96syl2anc 573 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9824, 97pm2.61dan 814 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wne 2943  cun 3721  cin 3722  c0 4063  {csn 4317  {cpr 4319   cuni 4575  Disj wdisj 4755   class class class wbr 4787  cmpt 4864  dom cdm 5250  cres 5252  cfv 6030  (class class class)co 6795  ωcom 7215  cdom 8110  csdm 8111  Fincfn 8112  0cc0 10141  +∞cpnf 10276  *cxr 10278   +𝑒 cxad 12148  [,]cicc 12382  Σ^csumge0 41093  Meascmea 41180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7099  ax-inf2 8705  ax-cnex 10197  ax-resscn 10198  ax-1cn 10199  ax-icn 10200  ax-addcl 10201  ax-addrcl 10202  ax-mulcl 10203  ax-mulrcl 10204  ax-mulcom 10205  ax-addass 10206  ax-mulass 10207  ax-distr 10208  ax-i2m1 10209  ax-1ne0 10210  ax-1rid 10211  ax-rnegex 10212  ax-rrecex 10213  ax-cnre 10214  ax-pre-lttri 10215  ax-pre-lttrn 10216  ax-pre-ltadd 10217  ax-pre-mulgt0 10218  ax-pre-sup 10219
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-disj 4756  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-se 5210  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-isom 6039  df-riota 6756  df-ov 6798  df-oprab 6799  df-mpt2 6800  df-om 7216  df-1st 7318  df-2nd 7319  df-wrecs 7562  df-recs 7624  df-rdg 7662  df-1o 7716  df-oadd 7720  df-er 7899  df-en 8113  df-dom 8114  df-sdom 8115  df-fin 8116  df-sup 8507  df-oi 8574  df-card 8968  df-pnf 10281  df-mnf 10282  df-xr 10283  df-ltxr 10284  df-le 10285  df-sub 10473  df-neg 10474  df-div 10890  df-nn 11226  df-2 11284  df-3 11285  df-n0 11499  df-z 11584  df-uz 11893  df-rp 12035  df-xadd 12151  df-ico 12385  df-icc 12386  df-fz 12533  df-fzo 12673  df-seq 13008  df-exp 13067  df-hash 13321  df-cj 14046  df-re 14047  df-im 14048  df-sqrt 14182  df-abs 14183  df-clim 14426  df-sum 14624  df-sumge0 41094  df-mea 41181
This theorem is referenced by:  meassle  41194  meaunle  41195  meadjunre  41207
  Copyright terms: Public domain W3C validator