| Step | Hyp | Ref
| Expression |
| 1 | | iccssxr 13398 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
| 2 | | meadjun.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Meas) |
| 3 | | meadjun.x |
. . . . . . . . 9
⊢ 𝑆 = dom 𝑀 |
| 4 | 2, 3 | meaf 46458 |
. . . . . . . 8
⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
| 5 | | meadjun.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
| 6 | 4, 5 | ffvelcdmd 7060 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 7 | 1, 6 | sselid 3947 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐵) ∈
ℝ*) |
| 8 | | xaddlid 13209 |
. . . . . 6
⊢ ((𝑀‘𝐵) ∈ ℝ* → (0
+𝑒 (𝑀‘𝐵)) = (𝑀‘𝐵)) |
| 9 | 7, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
(𝑀‘𝐵)) = (𝑀‘𝐵)) |
| 10 | 9 | eqcomd 2736 |
. . . 4
⊢ (𝜑 → (𝑀‘𝐵) = (0 +𝑒 (𝑀‘𝐵))) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘𝐵) = (0 +𝑒 (𝑀‘𝐵))) |
| 12 | | uneq1 4127 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 ∪ 𝐵) = (∅ ∪ 𝐵)) |
| 13 | | 0un 4362 |
. . . . . . 7
⊢ (∅
∪ 𝐵) = 𝐵 |
| 14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝐴 = ∅ → (∅ ∪
𝐵) = 𝐵) |
| 15 | 12, 14 | eqtrd 2765 |
. . . . 5
⊢ (𝐴 = ∅ → (𝐴 ∪ 𝐵) = 𝐵) |
| 16 | 15 | fveq2d 6865 |
. . . 4
⊢ (𝐴 = ∅ → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘𝐵)) |
| 17 | 16 | adantl 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘𝐵)) |
| 18 | | fveq2 6861 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝑀‘𝐴) = (𝑀‘∅)) |
| 19 | 18 | adantl 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘𝐴) = (𝑀‘∅)) |
| 20 | 2 | mea0 46459 |
. . . . . 6
⊢ (𝜑 → (𝑀‘∅) = 0) |
| 21 | 20 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘∅) = 0) |
| 22 | 19, 21 | eqtrd 2765 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘𝐴) = 0) |
| 23 | 22 | oveq1d 7405 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵)) = (0 +𝑒 (𝑀‘𝐵))) |
| 24 | 11, 17, 23 | 3eqtr4d 2775 |
. 2
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 25 | | simpl 482 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑) |
| 26 | | meadjun.dj |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
| 27 | 26 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = ∅) |
| 28 | | inidm 4193 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
| 29 | 28 | eqcomi 2739 |
. . . . . . . . . 10
⊢ 𝐴 = (𝐴 ∩ 𝐴) |
| 30 | | ineq2 4180 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐴) = (𝐴 ∩ 𝐵)) |
| 31 | 29, 30 | eqtr2id 2778 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
| 32 | 31 | adantl 481 |
. . . . . . . 8
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = 𝐴) |
| 33 | | neqne 2934 |
. . . . . . . . 9
⊢ (¬
𝐴 = ∅ → 𝐴 ≠ ∅) |
| 34 | 33 | adantr 480 |
. . . . . . . 8
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅) |
| 35 | 32, 34 | eqnetrd 2993 |
. . . . . . 7
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) ≠ ∅) |
| 36 | 35 | neneqd 2931 |
. . . . . 6
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴 ∩ 𝐵) = ∅) |
| 37 | 36 | adantll 714 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴 ∩ 𝐵) = ∅) |
| 38 | 27, 37 | pm2.65da 816 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵) |
| 39 | 38 | neqned 2933 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ 𝐵) |
| 40 | | meadjun.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
| 41 | | uniprg 4890 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
| 42 | 40, 5, 41 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
| 43 | 42 | eqcomd 2736 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∪ 𝐵) = ∪ {𝐴, 𝐵}) |
| 44 | 43 | fveq2d 6865 |
. . . . 5
⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘∪ {𝐴, 𝐵})) |
| 45 | 44 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘∪ {𝐴, 𝐵})) |
| 46 | 40, 5 | prssd 4789 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝑆) |
| 47 | | prfi 9281 |
. . . . . . . 8
⊢ {𝐴, 𝐵} ∈ Fin |
| 48 | | isfinite 9612 |
. . . . . . . . . 10
⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) |
| 49 | 48 | biimpi 216 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω) |
| 50 | | sdomdom 8954 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω) |
| 51 | 49, 50 | syl 17 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω) |
| 52 | 47, 51 | ax-mp 5 |
. . . . . . 7
⊢ {𝐴, 𝐵} ≼ ω |
| 53 | 52 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
| 54 | | disjxsn 5104 |
. . . . . . . . . 10
⊢
Disj 𝑥 ∈
{𝐵}𝑥 |
| 55 | 54 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → Disj 𝑥 ∈ {𝐵}𝑥) |
| 56 | | preq1 4700 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) |
| 57 | | dfsn2 4605 |
. . . . . . . . . . . . 13
⊢ {𝐵} = {𝐵, 𝐵} |
| 58 | 57 | eqcomi 2739 |
. . . . . . . . . . . 12
⊢ {𝐵, 𝐵} = {𝐵} |
| 59 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
| 60 | 56, 59 | eqtrd 2765 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
| 61 | 60 | disjeq1d 5085 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ Disj 𝑥 ∈ {𝐵}𝑥)) |
| 62 | 55, 61 | mpbird 257 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
| 63 | 62 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
| 64 | | simpl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑) |
| 65 | | neqne 2934 |
. . . . . . . . 9
⊢ (¬
𝐴 = 𝐵 → 𝐴 ≠ 𝐵) |
| 66 | 65 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
| 67 | 26 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∩ 𝐵) = ∅) |
| 68 | 40 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) |
| 69 | 5 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) |
| 70 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
| 71 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
| 72 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
| 73 | 71, 72 | disjprg 5106 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴 ∩ 𝐵) = ∅)) |
| 74 | 68, 69, 70, 73 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴 ∩ 𝐵) = ∅)) |
| 75 | 67, 74 | mpbird 257 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
| 76 | 64, 66, 75 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
| 77 | 63, 76 | pm2.61dan 812 |
. . . . . 6
⊢ (𝜑 → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
| 78 | 2, 3, 46, 53, 77 | meadjuni 46462 |
. . . . 5
⊢ (𝜑 → (𝑀‘∪ {𝐴, 𝐵}) =
(Σ^‘(𝑀 ↾ {𝐴, 𝐵}))) |
| 79 | 78 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘∪ {𝐴, 𝐵}) =
(Σ^‘(𝑀 ↾ {𝐴, 𝐵}))) |
| 80 | 4, 40 | ffvelcdmd 7060 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| 81 | 80 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
| 82 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 83 | | fveq2 6861 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑀‘𝑥) = (𝑀‘𝐴)) |
| 84 | | fveq2 6861 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑀‘𝑥) = (𝑀‘𝐵)) |
| 85 | 68, 69, 81, 82, 83, 84, 70 | sge0pr 46399 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) →
(Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥))) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 86 | 4, 46 | fssresd 6730 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞)) |
| 87 | 86 | feqmptd 6932 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥))) |
| 88 | | fvres 6880 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀‘𝑥)) |
| 89 | 88 | mpteq2ia 5205 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥)) |
| 90 | 89 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥))) |
| 91 | 87, 90 | eqtrd 2765 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥))) |
| 92 | 91 | fveq2d 6865 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ {𝐴, 𝐵})) =
(Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥)))) |
| 93 | 92 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) →
(Σ^‘(𝑀 ↾ {𝐴, 𝐵})) =
(Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥)))) |
| 94 | | eqidd 2731 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 95 | 85, 93, 94 | 3eqtr4d 2775 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) →
(Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 96 | 45, 79, 95 | 3eqtrd 2769 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 97 | 25, 39, 96 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
| 98 | 24, 97 | pm2.61dan 812 |
1
⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |