Step | Hyp | Ref
| Expression |
1 | | iccssxr 13161 |
. . . . . . 7
⊢
(0[,]+∞) ⊆ ℝ* |
2 | | meadjun.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ Meas) |
3 | | meadjun.x |
. . . . . . . . 9
⊢ 𝑆 = dom 𝑀 |
4 | 2, 3 | meaf 43962 |
. . . . . . . 8
⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) |
5 | | meadjun.b |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ∈ 𝑆) |
6 | 4, 5 | ffvelrnd 6959 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐵) ∈ (0[,]+∞)) |
7 | 1, 6 | sselid 3924 |
. . . . . 6
⊢ (𝜑 → (𝑀‘𝐵) ∈
ℝ*) |
8 | | xaddid2 12975 |
. . . . . 6
⊢ ((𝑀‘𝐵) ∈ ℝ* → (0
+𝑒 (𝑀‘𝐵)) = (𝑀‘𝐵)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ (𝜑 → (0 +𝑒
(𝑀‘𝐵)) = (𝑀‘𝐵)) |
10 | 9 | eqcomd 2746 |
. . . 4
⊢ (𝜑 → (𝑀‘𝐵) = (0 +𝑒 (𝑀‘𝐵))) |
11 | 10 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘𝐵) = (0 +𝑒 (𝑀‘𝐵))) |
12 | | uneq1 4095 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝐴 ∪ 𝐵) = (∅ ∪ 𝐵)) |
13 | | 0un 4332 |
. . . . . . 7
⊢ (∅
∪ 𝐵) = 𝐵 |
14 | 13 | a1i 11 |
. . . . . 6
⊢ (𝐴 = ∅ → (∅ ∪
𝐵) = 𝐵) |
15 | 12, 14 | eqtrd 2780 |
. . . . 5
⊢ (𝐴 = ∅ → (𝐴 ∪ 𝐵) = 𝐵) |
16 | 15 | fveq2d 6775 |
. . . 4
⊢ (𝐴 = ∅ → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘𝐵)) |
17 | 16 | adantl 482 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘𝐵)) |
18 | | fveq2 6771 |
. . . . . 6
⊢ (𝐴 = ∅ → (𝑀‘𝐴) = (𝑀‘∅)) |
19 | 18 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘𝐴) = (𝑀‘∅)) |
20 | 2 | mea0 43963 |
. . . . . 6
⊢ (𝜑 → (𝑀‘∅) = 0) |
21 | 20 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘∅) = 0) |
22 | 19, 21 | eqtrd 2780 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘𝐴) = 0) |
23 | 22 | oveq1d 7286 |
. . 3
⊢ ((𝜑 ∧ 𝐴 = ∅) → ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵)) = (0 +𝑒 (𝑀‘𝐵))) |
24 | 11, 17, 23 | 3eqtr4d 2790 |
. 2
⊢ ((𝜑 ∧ 𝐴 = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
25 | | simpl 483 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑) |
26 | | meadjun.dj |
. . . . . 6
⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) |
27 | 26 | ad2antrr 723 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = ∅) |
28 | | inidm 4158 |
. . . . . . . . . . 11
⊢ (𝐴 ∩ 𝐴) = 𝐴 |
29 | 28 | eqcomi 2749 |
. . . . . . . . . 10
⊢ 𝐴 = (𝐴 ∩ 𝐴) |
30 | | ineq2 4146 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐴) = (𝐴 ∩ 𝐵)) |
31 | 29, 30 | eqtr2id 2793 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐵) = 𝐴) |
32 | 31 | adantl 482 |
. . . . . . . 8
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) = 𝐴) |
33 | | neqne 2953 |
. . . . . . . . 9
⊢ (¬
𝐴 = ∅ → 𝐴 ≠ ∅) |
34 | 33 | adantr 481 |
. . . . . . . 8
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅) |
35 | 32, 34 | eqnetrd 3013 |
. . . . . . 7
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴 ∩ 𝐵) ≠ ∅) |
36 | 35 | neneqd 2950 |
. . . . . 6
⊢ ((¬
𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴 ∩ 𝐵) = ∅) |
37 | 36 | adantll 711 |
. . . . 5
⊢ (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴 ∩ 𝐵) = ∅) |
38 | 27, 37 | pm2.65da 814 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵) |
39 | 38 | neqned 2952 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴 ≠ 𝐵) |
40 | | meadjun.a |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈ 𝑆) |
41 | | uniprg 4862 |
. . . . . . . 8
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → ∪ {𝐴, 𝐵} = (𝐴 ∪ 𝐵)) |
42 | 40, 5, 41 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
43 | 42 | eqcomd 2746 |
. . . . . 6
⊢ (𝜑 → (𝐴 ∪ 𝐵) = ∪ {𝐴, 𝐵}) |
44 | 43 | fveq2d 6775 |
. . . . 5
⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘∪ {𝐴, 𝐵})) |
45 | 44 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘(𝐴 ∪ 𝐵)) = (𝑀‘∪ {𝐴, 𝐵})) |
46 | 40, 5 | prssd 4761 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵} ⊆ 𝑆) |
47 | | prfi 9067 |
. . . . . . . 8
⊢ {𝐴, 𝐵} ∈ Fin |
48 | | isfinite 9388 |
. . . . . . . . . 10
⊢ ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω) |
49 | 48 | biimpi 215 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω) |
50 | | sdomdom 8751 |
. . . . . . . . 9
⊢ ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω) |
51 | 49, 50 | syl 17 |
. . . . . . . 8
⊢ ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω) |
52 | 47, 51 | ax-mp 5 |
. . . . . . 7
⊢ {𝐴, 𝐵} ≼ ω |
53 | 52 | a1i 11 |
. . . . . 6
⊢ (𝜑 → {𝐴, 𝐵} ≼ ω) |
54 | | disjxsn 5072 |
. . . . . . . . . 10
⊢
Disj 𝑥 ∈
{𝐵}𝑥 |
55 | 54 | a1i 11 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → Disj 𝑥 ∈ {𝐵}𝑥) |
56 | | preq1 4675 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵}) |
57 | | dfsn2 4580 |
. . . . . . . . . . . . 13
⊢ {𝐵} = {𝐵, 𝐵} |
58 | 57 | eqcomi 2749 |
. . . . . . . . . . . 12
⊢ {𝐵, 𝐵} = {𝐵} |
59 | 58 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵}) |
60 | 56, 59 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵}) |
61 | 60 | disjeq1d 5052 |
. . . . . . . . 9
⊢ (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ Disj 𝑥 ∈ {𝐵}𝑥)) |
62 | 55, 61 | mpbird 256 |
. . . . . . . 8
⊢ (𝐴 = 𝐵 → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
63 | 62 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
64 | | simpl 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑) |
65 | | neqne 2953 |
. . . . . . . . 9
⊢ (¬
𝐴 = 𝐵 → 𝐴 ≠ 𝐵) |
66 | 65 | adantl 482 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴 ≠ 𝐵) |
67 | 26 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝐴 ∩ 𝐵) = ∅) |
68 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑆) |
69 | 5 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑆) |
70 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) |
71 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) |
72 | | id 22 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝐵 → 𝑥 = 𝐵) |
73 | 71, 72 | disjprg 5075 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴 ∩ 𝐵) = ∅)) |
74 | 68, 69, 70, 73 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴 ∩ 𝐵) = ∅)) |
75 | 67, 74 | mpbird 256 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
76 | 64, 66, 75 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
77 | 63, 76 | pm2.61dan 810 |
. . . . . 6
⊢ (𝜑 → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥) |
78 | 2, 3, 46, 53, 77 | meadjuni 43966 |
. . . . 5
⊢ (𝜑 → (𝑀‘∪ {𝐴, 𝐵}) =
(Σ^‘(𝑀 ↾ {𝐴, 𝐵}))) |
79 | 78 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘∪ {𝐴, 𝐵}) =
(Σ^‘(𝑀 ↾ {𝐴, 𝐵}))) |
80 | 4, 40 | ffvelrnd 6959 |
. . . . . . 7
⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) |
81 | 80 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐴) ∈ (0[,]+∞)) |
82 | 6 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
83 | | fveq2 6771 |
. . . . . 6
⊢ (𝑥 = 𝐴 → (𝑀‘𝑥) = (𝑀‘𝐴)) |
84 | | fveq2 6771 |
. . . . . 6
⊢ (𝑥 = 𝐵 → (𝑀‘𝑥) = (𝑀‘𝐵)) |
85 | 68, 69, 81, 82, 83, 84, 70 | sge0pr 43903 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) →
(Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥))) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
86 | 4, 46 | fssresd 6639 |
. . . . . . . . 9
⊢ (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞)) |
87 | 86 | feqmptd 6834 |
. . . . . . . 8
⊢ (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥))) |
88 | | fvres 6790 |
. . . . . . . . . 10
⊢ (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀‘𝑥)) |
89 | 88 | mpteq2ia 5182 |
. . . . . . . . 9
⊢ (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥)) |
90 | 89 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥))) |
91 | 87, 90 | eqtrd 2780 |
. . . . . . 7
⊢ (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥))) |
92 | 91 | fveq2d 6775 |
. . . . . 6
⊢ (𝜑 →
(Σ^‘(𝑀 ↾ {𝐴, 𝐵})) =
(Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥)))) |
93 | 92 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) →
(Σ^‘(𝑀 ↾ {𝐴, 𝐵})) =
(Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀‘𝑥)))) |
94 | | eqidd 2741 |
. . . . 5
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
95 | 85, 93, 94 | 3eqtr4d 2790 |
. . . 4
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) →
(Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
96 | 45, 79, 95 | 3eqtrd 2784 |
. . 3
⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
97 | 25, 39, 96 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |
98 | 24, 97 | pm2.61dan 810 |
1
⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) |