Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  meadjun Structured version   Visualization version   GIF version

Theorem meadjun 43031
Description: The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
meadjun.m (𝜑𝑀 ∈ Meas)
meadjun.x 𝑆 = dom 𝑀
meadjun.a (𝜑𝐴𝑆)
meadjun.b (𝜑𝐵𝑆)
meadjun.dj (𝜑 → (𝐴𝐵) = ∅)
Assertion
Ref Expression
meadjun (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))

Proof of Theorem meadjun
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12817 . . . . . . 7 (0[,]+∞) ⊆ ℝ*
2 meadjun.m . . . . . . . . 9 (𝜑𝑀 ∈ Meas)
3 meadjun.x . . . . . . . . 9 𝑆 = dom 𝑀
42, 3meaf 43022 . . . . . . . 8 (𝜑𝑀:𝑆⟶(0[,]+∞))
5 meadjun.b . . . . . . . 8 (𝜑𝐵𝑆)
64, 5ffvelrnd 6843 . . . . . . 7 (𝜑 → (𝑀𝐵) ∈ (0[,]+∞))
71, 6sseldi 3951 . . . . . 6 (𝜑 → (𝑀𝐵) ∈ ℝ*)
8 xaddid2 12632 . . . . . 6 ((𝑀𝐵) ∈ ℝ* → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
97, 8syl 17 . . . . 5 (𝜑 → (0 +𝑒 (𝑀𝐵)) = (𝑀𝐵))
109eqcomd 2830 . . . 4 (𝜑 → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
1110adantr 484 . . 3 ((𝜑𝐴 = ∅) → (𝑀𝐵) = (0 +𝑒 (𝑀𝐵)))
12 uneq1 4118 . . . . . 6 (𝐴 = ∅ → (𝐴𝐵) = (∅ ∪ 𝐵))
13 0un 4329 . . . . . . 7 (∅ ∪ 𝐵) = 𝐵
1413a1i 11 . . . . . 6 (𝐴 = ∅ → (∅ ∪ 𝐵) = 𝐵)
1512, 14eqtrd 2859 . . . . 5 (𝐴 = ∅ → (𝐴𝐵) = 𝐵)
1615fveq2d 6665 . . . 4 (𝐴 = ∅ → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
1716adantl 485 . . 3 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = (𝑀𝐵))
18 fveq2 6661 . . . . . 6 (𝐴 = ∅ → (𝑀𝐴) = (𝑀‘∅))
1918adantl 485 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀𝐴) = (𝑀‘∅))
202mea0 43023 . . . . . 6 (𝜑 → (𝑀‘∅) = 0)
2120adantr 484 . . . . 5 ((𝜑𝐴 = ∅) → (𝑀‘∅) = 0)
2219, 21eqtrd 2859 . . . 4 ((𝜑𝐴 = ∅) → (𝑀𝐴) = 0)
2322oveq1d 7164 . . 3 ((𝜑𝐴 = ∅) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = (0 +𝑒 (𝑀𝐵)))
2411, 17, 233eqtr4d 2869 . 2 ((𝜑𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
25 simpl 486 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝜑)
26 meadjun.dj . . . . . 6 (𝜑 → (𝐴𝐵) = ∅)
2726ad2antrr 725 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → (𝐴𝐵) = ∅)
28 inidm 4180 . . . . . . . . . . 11 (𝐴𝐴) = 𝐴
2928eqcomi 2833 . . . . . . . . . 10 𝐴 = (𝐴𝐴)
30 ineq2 4168 . . . . . . . . . 10 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐴𝐵))
3129, 30syl5req 2872 . . . . . . . . 9 (𝐴 = 𝐵 → (𝐴𝐵) = 𝐴)
3231adantl 485 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) = 𝐴)
33 neqne 3022 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
3433adantr 484 . . . . . . . 8 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → 𝐴 ≠ ∅)
3532, 34eqnetrd 3081 . . . . . . 7 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → (𝐴𝐵) ≠ ∅)
3635neneqd 3019 . . . . . 6 ((¬ 𝐴 = ∅ ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3736adantll 713 . . . . 5 (((𝜑 ∧ ¬ 𝐴 = ∅) ∧ 𝐴 = 𝐵) → ¬ (𝐴𝐵) = ∅)
3827, 37pm2.65da 816 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → ¬ 𝐴 = 𝐵)
3938neqned 3021 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝐴𝐵)
40 meadjun.a . . . . . . . 8 (𝜑𝐴𝑆)
41 uniprg 4842 . . . . . . . 8 ((𝐴𝑆𝐵𝑆) → {𝐴, 𝐵} = (𝐴𝐵))
4240, 5, 41syl2anc 587 . . . . . . 7 (𝜑 {𝐴, 𝐵} = (𝐴𝐵))
4342eqcomd 2830 . . . . . 6 (𝜑 → (𝐴𝐵) = {𝐴, 𝐵})
4443fveq2d 6665 . . . . 5 (𝜑 → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4544adantr 484 . . . 4 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = (𝑀 {𝐴, 𝐵}))
4640, 5prssd 4739 . . . . . 6 (𝜑 → {𝐴, 𝐵} ⊆ 𝑆)
47 prfi 8790 . . . . . . . 8 {𝐴, 𝐵} ∈ Fin
48 isfinite 9112 . . . . . . . . . 10 ({𝐴, 𝐵} ∈ Fin ↔ {𝐴, 𝐵} ≺ ω)
4948biimpi 219 . . . . . . . . 9 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≺ ω)
50 sdomdom 8533 . . . . . . . . 9 ({𝐴, 𝐵} ≺ ω → {𝐴, 𝐵} ≼ ω)
5149, 50syl 17 . . . . . . . 8 ({𝐴, 𝐵} ∈ Fin → {𝐴, 𝐵} ≼ ω)
5247, 51ax-mp 5 . . . . . . 7 {𝐴, 𝐵} ≼ ω
5352a1i 11 . . . . . 6 (𝜑 → {𝐴, 𝐵} ≼ ω)
54 disjxsn 5045 . . . . . . . . . 10 Disj 𝑥 ∈ {𝐵}𝑥
5554a1i 11 . . . . . . . . 9 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐵}𝑥)
56 preq1 4654 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵, 𝐵})
57 dfsn2 4563 . . . . . . . . . . . . 13 {𝐵} = {𝐵, 𝐵}
5857eqcomi 2833 . . . . . . . . . . . 12 {𝐵, 𝐵} = {𝐵}
5958a1i 11 . . . . . . . . . . 11 (𝐴 = 𝐵 → {𝐵, 𝐵} = {𝐵})
6056, 59eqtrd 2859 . . . . . . . . . 10 (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐵})
6160disjeq1d 5025 . . . . . . . . 9 (𝐴 = 𝐵 → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥Disj 𝑥 ∈ {𝐵}𝑥))
6255, 61mpbird 260 . . . . . . . 8 (𝐴 = 𝐵Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
6362adantl 485 . . . . . . 7 ((𝜑𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
64 simpl 486 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝜑)
65 neqne 3022 . . . . . . . . 9 𝐴 = 𝐵𝐴𝐵)
6665adantl 485 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → 𝐴𝐵)
6726adantr 484 . . . . . . . . 9 ((𝜑𝐴𝐵) → (𝐴𝐵) = ∅)
6840adantr 484 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝑆)
695adantr 484 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐵𝑆)
70 simpr 488 . . . . . . . . . 10 ((𝜑𝐴𝐵) → 𝐴𝐵)
71 id 22 . . . . . . . . . . 11 (𝑥 = 𝐴𝑥 = 𝐴)
72 id 22 . . . . . . . . . . 11 (𝑥 = 𝐵𝑥 = 𝐵)
7371, 72disjprg 5048 . . . . . . . . . 10 ((𝐴𝑆𝐵𝑆𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7468, 69, 70, 73syl3anc 1368 . . . . . . . . 9 ((𝜑𝐴𝐵) → (Disj 𝑥 ∈ {𝐴, 𝐵}𝑥 ↔ (𝐴𝐵) = ∅))
7567, 74mpbird 260 . . . . . . . 8 ((𝜑𝐴𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7664, 66, 75syl2anc 587 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = 𝐵) → Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
7763, 76pm2.61dan 812 . . . . . 6 (𝜑Disj 𝑥 ∈ {𝐴, 𝐵}𝑥)
782, 3, 46, 53, 77meadjuni 43026 . . . . 5 (𝜑 → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
7978adantr 484 . . . 4 ((𝜑𝐴𝐵) → (𝑀 {𝐴, 𝐵}) = (Σ^‘(𝑀 ↾ {𝐴, 𝐵})))
804, 40ffvelrnd 6843 . . . . . . 7 (𝜑 → (𝑀𝐴) ∈ (0[,]+∞))
8180adantr 484 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐴) ∈ (0[,]+∞))
826adantr 484 . . . . . 6 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ (0[,]+∞))
83 fveq2 6661 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
84 fveq2 6661 . . . . . 6 (𝑥 = 𝐵 → (𝑀𝑥) = (𝑀𝐵))
8568, 69, 81, 82, 83, 84, 70sge0pr 42963 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
864, 46fssresd 6535 . . . . . . . . 9 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}):{𝐴, 𝐵}⟶(0[,]+∞))
8786feqmptd 6724 . . . . . . . 8 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)))
88 fvres 6680 . . . . . . . . . 10 (𝑥 ∈ {𝐴, 𝐵} → ((𝑀 ↾ {𝐴, 𝐵})‘𝑥) = (𝑀𝑥))
8988mpteq2ia 5143 . . . . . . . . 9 (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))
9089a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ {𝐴, 𝐵} ↦ ((𝑀 ↾ {𝐴, 𝐵})‘𝑥)) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9187, 90eqtrd 2859 . . . . . . 7 (𝜑 → (𝑀 ↾ {𝐴, 𝐵}) = (𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥)))
9291fveq2d 6665 . . . . . 6 (𝜑 → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
9392adantr 484 . . . . 5 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = (Σ^‘(𝑥 ∈ {𝐴, 𝐵} ↦ (𝑀𝑥))))
94 eqidd 2825 . . . . 5 ((𝜑𝐴𝐵) → ((𝑀𝐴) +𝑒 (𝑀𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9585, 93, 943eqtr4d 2869 . . . 4 ((𝜑𝐴𝐵) → (Σ^‘(𝑀 ↾ {𝐴, 𝐵})) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9645, 79, 953eqtrd 2863 . . 3 ((𝜑𝐴𝐵) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9725, 39, 96syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
9824, 97pm2.61dan 812 1 (𝜑 → (𝑀‘(𝐴𝐵)) = ((𝑀𝐴) +𝑒 (𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2115  wne 3014  cun 3917  cin 3918  c0 4276  {csn 4550  {cpr 4552   cuni 4824  Disj wdisj 5017   class class class wbr 5052  cmpt 5132  dom cdm 5542  cres 5544  cfv 6343  (class class class)co 7149  ωcom 7574  cdom 8503  csdm 8504  Fincfn 8505  0cc0 10535  +∞cpnf 10670  *cxr 10672   +𝑒 cxad 12502  [,]cicc 12738  Σ^csumge0 42931  Meascmea 43018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-inf2 9101  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612  ax-pre-sup 10613
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-disj 5018  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-se 5502  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-isom 6352  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-sup 8903  df-oi 8971  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-div 11296  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-z 11979  df-uz 12241  df-rp 12387  df-xadd 12505  df-ico 12741  df-icc 12742  df-fz 12895  df-fzo 13038  df-seq 13374  df-exp 13435  df-hash 13696  df-cj 14458  df-re 14459  df-im 14460  df-sqrt 14594  df-abs 14595  df-clim 14845  df-sum 15043  df-sumge0 42932  df-mea 43019
This theorem is referenced by:  meassle  43032  meaunle  43033  meadjunre  43045
  Copyright terms: Public domain W3C validator