MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxiun Structured version   Visualization version   GIF version

Theorem disjxiun 5146
Description: An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.)
Assertion
Ref Expression
disjxiun (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem disjxiun
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 5032 . . . . . 6 𝑦 𝑦𝐴 𝐵
2 nfcv 2904 . . . . . 6 𝑦𝐶
31, 2nfdisjw 5126 . . . . 5 𝑦Disj 𝑥 𝑦𝐴 𝐵𝐶
4 disjss1 5120 . . . . . 6 (𝐵 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑥𝐵 𝐶))
5 ssiun2 5051 . . . . . 6 (𝑦𝐴𝐵 𝑦𝐴 𝐵)
64, 5syl11 33 . . . . 5 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (𝑦𝐴Disj 𝑥𝐵 𝐶))
73, 6ralrimi 3255 . . . 4 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶)
87a1i 11 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶))
9 simplr 768 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
10 ssiun2 5051 . . . . . . . . . . . . 13 (𝑢𝐴𝑢 / 𝑦𝐵 𝑢𝐴 𝑢 / 𝑦𝐵)
11 nfcv 2904 . . . . . . . . . . . . . 14 𝑢𝐵
12 nfcsb1v 3919 . . . . . . . . . . . . . 14 𝑦𝑢 / 𝑦𝐵
13 csbeq1a 3908 . . . . . . . . . . . . . 14 (𝑦 = 𝑢𝐵 = 𝑢 / 𝑦𝐵)
1411, 12, 13cbviun 5040 . . . . . . . . . . . . 13 𝑦𝐴 𝐵 = 𝑢𝐴 𝑢 / 𝑦𝐵
1510, 14sseqtrrdi 4034 . . . . . . . . . . . 12 (𝑢𝐴𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1615adantr 482 . . . . . . . . . . 11 ((𝑢𝐴𝑣𝐴) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1716ad2antrl 727 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
18 csbeq1 3897 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
1918sseq1d 4014 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵))
2019, 15vtoclga 3566 . . . . . . . . . . . 12 (𝑣𝐴𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2120adantl 483 . . . . . . . . . . 11 ((𝑢𝐴𝑣𝐴) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2221ad2antrl 727 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2311, 12, 13cbvdisj 5124 . . . . . . . . . . . . . . . 16 (Disj 𝑦𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑦𝐵)
2418disjor 5129 . . . . . . . . . . . . . . . 16 (Disj 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2523, 24sylbb 218 . . . . . . . . . . . . . . 15 (Disj 𝑦𝐴 𝐵 → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
26 rsp2 3275 . . . . . . . . . . . . . . 15 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅) → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
2725, 26syl 17 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝐵 → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
2827imp 408 . . . . . . . . . . . . 13 ((Disj 𝑦𝐴 𝐵 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2928ord 863 . . . . . . . . . . . 12 ((Disj 𝑦𝐴 𝐵 ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
3029impr 456 . . . . . . . . . . 11 ((Disj 𝑦𝐴 𝐵 ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
3130adantlr 714 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
32 disjiun 5136 . . . . . . . . . 10 ((Disj 𝑥 𝑦𝐴 𝐵𝐶 ∧ (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵 ∧ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
339, 17, 22, 31, 32syl13anc 1373 . . . . . . . . 9 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
3433expr 458 . . . . . . . 8 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3534orrd 862 . . . . . . 7 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3635ralrimivva 3201 . . . . . 6 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3718iuneq1d 5025 . . . . . . 7 (𝑢 = 𝑣 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
3837disjor 5129 . . . . . 6 (Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3936, 38sylibr 233 . . . . 5 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
40 nfcv 2904 . . . . . 6 𝑢 𝑥𝐵 𝐶
4112, 2nfiun 5028 . . . . . 6 𝑦 𝑥 𝑢 / 𝑦𝐵𝐶
4213iuneq1d 5025 . . . . . 6 (𝑦 = 𝑢 𝑥𝐵 𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
4340, 41, 42cbvdisj 5124 . . . . 5 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
4439, 43sylibr 233 . . . 4 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑦𝐴 𝑥𝐵 𝐶)
4544ex 414 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶))
468, 45jcad 514 . 2 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
4714eleq2i 2826 . . . . . . . 8 (𝑟 𝑦𝐴 𝐵𝑟 𝑢𝐴 𝑢 / 𝑦𝐵)
48 eliun 5002 . . . . . . . 8 (𝑟 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
4947, 48bitri 275 . . . . . . 7 (𝑟 𝑦𝐴 𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
50 nfcv 2904 . . . . . . . . . 10 𝑣𝐵
51 nfcsb1v 3919 . . . . . . . . . 10 𝑦𝑣 / 𝑦𝐵
52 csbeq1a 3908 . . . . . . . . . 10 (𝑦 = 𝑣𝐵 = 𝑣 / 𝑦𝐵)
5350, 51, 52cbviun 5040 . . . . . . . . 9 𝑦𝐴 𝐵 = 𝑣𝐴 𝑣 / 𝑦𝐵
5453eleq2i 2826 . . . . . . . 8 (𝑠 𝑦𝐴 𝐵𝑠 𝑣𝐴 𝑣 / 𝑦𝐵)
55 eliun 5002 . . . . . . . 8 (𝑠 𝑣𝐴 𝑣 / 𝑦𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5654, 55bitri 275 . . . . . . 7 (𝑠 𝑦𝐴 𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5749, 56anbi12i 628 . . . . . 6 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
58 reeanv 3227 . . . . . 6 (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
5957, 58bitr4i 278 . . . . 5 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ ∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵))
60 simplrr 777 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → ¬ 𝑟 = 𝑠)
6112, 2nfdisjw 5126 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑥 𝑢 / 𝑦𝐵𝐶
6213disjeq1d 5122 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6361, 62rspc 3601 . . . . . . . . . . . . . . . . . 18 (𝑢𝐴 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6463impcom 409 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴) → Disj 𝑥 𝑢 / 𝑦𝐵𝐶)
65 disjors 5130 . . . . . . . . . . . . . . . . 17 (Disj 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6664, 65sylib 217 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6766ad2ant2r 746 . . . . . . . . . . . . . . 15 (((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6867adantr 482 . . . . . . . . . . . . . 14 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
69 simplrl 776 . . . . . . . . . . . . . . 15 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑟𝑢 / 𝑦𝐵)
70 simplrr 777 . . . . . . . . . . . . . . . 16 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑠𝑣 / 𝑦𝐵)
7118adantl 483 . . . . . . . . . . . . . . . 16 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
7270, 71eleqtrrd 2837 . . . . . . . . . . . . . . 15 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑠𝑢 / 𝑦𝐵)
7369, 72jca 513 . . . . . . . . . . . . . 14 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵))
74 rsp2 3275 . . . . . . . . . . . . . . 15 (∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
7574imp 408 . . . . . . . . . . . . . 14 ((∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7668, 73, 75syl2an2r 684 . . . . . . . . . . . . 13 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7776adantlrr 720 . . . . . . . . . . . 12 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7877ord 863 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7960, 78mpd 15 . . . . . . . . . 10 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
80 ssiun2 5051 . . . . . . . . . . . . . 14 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶)
81 nfcv 2904 . . . . . . . . . . . . . . 15 𝑟𝐶
82 nfcsb1v 3919 . . . . . . . . . . . . . . 15 𝑥𝑟 / 𝑥𝐶
83 csbeq1a 3908 . . . . . . . . . . . . . . 15 (𝑥 = 𝑟𝐶 = 𝑟 / 𝑥𝐶)
8481, 82, 83cbviun 5040 . . . . . . . . . . . . . 14 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶
8580, 84sseqtrrdi 4034 . . . . . . . . . . . . 13 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶)
86 ssiun2 5051 . . . . . . . . . . . . . 14 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶)
87 nfcv 2904 . . . . . . . . . . . . . . 15 𝑠𝐶
88 nfcsb1v 3919 . . . . . . . . . . . . . . 15 𝑥𝑠 / 𝑥𝐶
89 csbeq1a 3908 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠𝐶 = 𝑠 / 𝑥𝐶)
9087, 88, 89cbviun 5040 . . . . . . . . . . . . . 14 𝑥 𝑣 / 𝑦𝐵𝐶 = 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶
9186, 90sseqtrrdi 4034 . . . . . . . . . . . . 13 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶)
92 ss2in 4237 . . . . . . . . . . . . 13 ((𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
9385, 91, 92syl2an 597 . . . . . . . . . . . 12 ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
9493ad2antrl 727 . . . . . . . . . . 11 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
95 nfcv 2904 . . . . . . . . . . . . . . 15 𝑧 𝑥𝐵 𝐶
96 nfcsb1v 3919 . . . . . . . . . . . . . . . 16 𝑦𝑧 / 𝑦𝐵
9796, 2nfiun 5028 . . . . . . . . . . . . . . 15 𝑦 𝑥 𝑧 / 𝑦𝐵𝐶
98 csbeq1a 3908 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧𝐵 = 𝑧 / 𝑦𝐵)
9998iuneq1d 5025 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 𝑥𝐵 𝐶 = 𝑥 𝑧 / 𝑦𝐵𝐶)
10095, 97, 99cbvdisj 5124 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
101100biimpi 215 . . . . . . . . . . . . 13 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
102101ad3antlr 730 . . . . . . . . . . . 12 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
103 simplr 768 . . . . . . . . . . . 12 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑢𝐴𝑣𝐴))
104 id 22 . . . . . . . . . . . 12 (𝑢𝑣𝑢𝑣)
105 csbeq1 3897 . . . . . . . . . . . . . 14 (𝑧 = 𝑢𝑧 / 𝑦𝐵 = 𝑢 / 𝑦𝐵)
106105iuneq1d 5025 . . . . . . . . . . . . 13 (𝑧 = 𝑢 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
107 csbeq1 3897 . . . . . . . . . . . . . 14 (𝑧 = 𝑣𝑧 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
108107iuneq1d 5025 . . . . . . . . . . . . 13 (𝑧 = 𝑣 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
109106, 108disji2 5131 . . . . . . . . . . . 12 ((Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶 ∧ (𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
110102, 103, 104, 109syl2an3an 1423 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
111 sseq0 4400 . . . . . . . . . . 11 (((𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) ∧ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
11294, 110, 111syl2an2r 684 . . . . . . . . . 10 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
11379, 112pm2.61dane 3030 . . . . . . . . 9 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
114113expr 458 . . . . . . . 8 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
115114orrd 862 . . . . . . 7 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
116115ex 414 . . . . . 6 (((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
117116rexlimdvva 3212 . . . . 5 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
11859, 117biimtrid 241 . . . 4 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
119118ralrimivv 3199 . . 3 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
120 disjors 5130 . . 3 (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
121119, 120sylibr 233 . 2 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
12246, 121impbid1 224 1 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941  wral 3062  wrex 3071  csb 3894  cin 3948  wss 3949  c0 4323   ciun 4998  Disj wdisj 5114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rmo 3377  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-in 3956  df-ss 3966  df-nul 4324  df-iun 5000  df-disj 5115
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator