MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxiun Structured version   Visualization version   GIF version

Theorem disjxiun 5090
Description: An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.)
Assertion
Ref Expression
disjxiun (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem disjxiun
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 4977 . . . . . 6 𝑦 𝑦𝐴 𝐵
2 nfcv 2895 . . . . . 6 𝑦𝐶
31, 2nfdisjw 5072 . . . . 5 𝑦Disj 𝑥 𝑦𝐴 𝐵𝐶
4 disjss1 5066 . . . . . 6 (𝐵 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑥𝐵 𝐶))
5 ssiun2 4998 . . . . . 6 (𝑦𝐴𝐵 𝑦𝐴 𝐵)
64, 5syl11 33 . . . . 5 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (𝑦𝐴Disj 𝑥𝐵 𝐶))
73, 6ralrimi 3231 . . . 4 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶)
87a1i 11 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶))
9 simplr 768 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
10 ssiun2 4998 . . . . . . . . . . . . 13 (𝑢𝐴𝑢 / 𝑦𝐵 𝑢𝐴 𝑢 / 𝑦𝐵)
11 nfcv 2895 . . . . . . . . . . . . . 14 𝑢𝐵
12 nfcsb1v 3870 . . . . . . . . . . . . . 14 𝑦𝑢 / 𝑦𝐵
13 csbeq1a 3860 . . . . . . . . . . . . . 14 (𝑦 = 𝑢𝐵 = 𝑢 / 𝑦𝐵)
1411, 12, 13cbviun 4985 . . . . . . . . . . . . 13 𝑦𝐴 𝐵 = 𝑢𝐴 𝑢 / 𝑦𝐵
1510, 14sseqtrrdi 3972 . . . . . . . . . . . 12 (𝑢𝐴𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1615adantr 480 . . . . . . . . . . 11 ((𝑢𝐴𝑣𝐴) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1716ad2antrl 728 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
18 csbeq1 3849 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
1918sseq1d 3962 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵))
2019, 15vtoclga 3529 . . . . . . . . . . . 12 (𝑣𝐴𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2120adantl 481 . . . . . . . . . . 11 ((𝑢𝐴𝑣𝐴) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2221ad2antrl 728 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2311, 12, 13cbvdisj 5070 . . . . . . . . . . . . . . . 16 (Disj 𝑦𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑦𝐵)
2418disjor 5075 . . . . . . . . . . . . . . . 16 (Disj 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2523, 24sylbb 219 . . . . . . . . . . . . . . 15 (Disj 𝑦𝐴 𝐵 → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
26 rsp2 3250 . . . . . . . . . . . . . . 15 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅) → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
2725, 26syl 17 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝐵 → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
2827imp 406 . . . . . . . . . . . . 13 ((Disj 𝑦𝐴 𝐵 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2928ord 864 . . . . . . . . . . . 12 ((Disj 𝑦𝐴 𝐵 ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
3029impr 454 . . . . . . . . . . 11 ((Disj 𝑦𝐴 𝐵 ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
3130adantlr 715 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
32 disjiun 5081 . . . . . . . . . 10 ((Disj 𝑥 𝑦𝐴 𝐵𝐶 ∧ (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵 ∧ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
339, 17, 22, 31, 32syl13anc 1374 . . . . . . . . 9 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
3433expr 456 . . . . . . . 8 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3534orrd 863 . . . . . . 7 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3635ralrimivva 3176 . . . . . 6 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3718iuneq1d 4969 . . . . . . 7 (𝑢 = 𝑣 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
3837disjor 5075 . . . . . 6 (Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3936, 38sylibr 234 . . . . 5 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
40 nfcv 2895 . . . . . 6 𝑢 𝑥𝐵 𝐶
4112, 2nfiun 4973 . . . . . 6 𝑦 𝑥 𝑢 / 𝑦𝐵𝐶
4213iuneq1d 4969 . . . . . 6 (𝑦 = 𝑢 𝑥𝐵 𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
4340, 41, 42cbvdisj 5070 . . . . 5 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
4439, 43sylibr 234 . . . 4 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑦𝐴 𝑥𝐵 𝐶)
4544ex 412 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶))
468, 45jcad 512 . 2 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
4714eleq2i 2825 . . . . . . . 8 (𝑟 𝑦𝐴 𝐵𝑟 𝑢𝐴 𝑢 / 𝑦𝐵)
48 eliun 4945 . . . . . . . 8 (𝑟 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
4947, 48bitri 275 . . . . . . 7 (𝑟 𝑦𝐴 𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
50 nfcv 2895 . . . . . . . . . 10 𝑣𝐵
51 nfcsb1v 3870 . . . . . . . . . 10 𝑦𝑣 / 𝑦𝐵
52 csbeq1a 3860 . . . . . . . . . 10 (𝑦 = 𝑣𝐵 = 𝑣 / 𝑦𝐵)
5350, 51, 52cbviun 4985 . . . . . . . . 9 𝑦𝐴 𝐵 = 𝑣𝐴 𝑣 / 𝑦𝐵
5453eleq2i 2825 . . . . . . . 8 (𝑠 𝑦𝐴 𝐵𝑠 𝑣𝐴 𝑣 / 𝑦𝐵)
55 eliun 4945 . . . . . . . 8 (𝑠 𝑣𝐴 𝑣 / 𝑦𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5654, 55bitri 275 . . . . . . 7 (𝑠 𝑦𝐴 𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5749, 56anbi12i 628 . . . . . 6 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
58 reeanv 3205 . . . . . 6 (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
5957, 58bitr4i 278 . . . . 5 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ ∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵))
60 simplrr 777 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → ¬ 𝑟 = 𝑠)
6112, 2nfdisjw 5072 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑥 𝑢 / 𝑦𝐵𝐶
6213disjeq1d 5068 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6361, 62rspc 3561 . . . . . . . . . . . . . . . . . 18 (𝑢𝐴 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6463impcom 407 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴) → Disj 𝑥 𝑢 / 𝑦𝐵𝐶)
65 disjors 5076 . . . . . . . . . . . . . . . . 17 (Disj 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6664, 65sylib 218 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6766ad2ant2r 747 . . . . . . . . . . . . . . 15 (((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6867adantr 480 . . . . . . . . . . . . . 14 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
69 simplrl 776 . . . . . . . . . . . . . . 15 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑟𝑢 / 𝑦𝐵)
70 simplrr 777 . . . . . . . . . . . . . . . 16 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑠𝑣 / 𝑦𝐵)
7118adantl 481 . . . . . . . . . . . . . . . 16 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
7270, 71eleqtrrd 2836 . . . . . . . . . . . . . . 15 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑠𝑢 / 𝑦𝐵)
7369, 72jca 511 . . . . . . . . . . . . . 14 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵))
74 rsp2 3250 . . . . . . . . . . . . . . 15 (∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
7574imp 406 . . . . . . . . . . . . . 14 ((∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7668, 73, 75syl2an2r 685 . . . . . . . . . . . . 13 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7776adantlrr 721 . . . . . . . . . . . 12 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7877ord 864 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7960, 78mpd 15 . . . . . . . . . 10 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
80 ssiun2 4998 . . . . . . . . . . . . . 14 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶)
81 nfcv 2895 . . . . . . . . . . . . . . 15 𝑟𝐶
82 nfcsb1v 3870 . . . . . . . . . . . . . . 15 𝑥𝑟 / 𝑥𝐶
83 csbeq1a 3860 . . . . . . . . . . . . . . 15 (𝑥 = 𝑟𝐶 = 𝑟 / 𝑥𝐶)
8481, 82, 83cbviun 4985 . . . . . . . . . . . . . 14 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶
8580, 84sseqtrrdi 3972 . . . . . . . . . . . . 13 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶)
86 ssiun2 4998 . . . . . . . . . . . . . 14 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶)
87 nfcv 2895 . . . . . . . . . . . . . . 15 𝑠𝐶
88 nfcsb1v 3870 . . . . . . . . . . . . . . 15 𝑥𝑠 / 𝑥𝐶
89 csbeq1a 3860 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠𝐶 = 𝑠 / 𝑥𝐶)
9087, 88, 89cbviun 4985 . . . . . . . . . . . . . 14 𝑥 𝑣 / 𝑦𝐵𝐶 = 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶
9186, 90sseqtrrdi 3972 . . . . . . . . . . . . 13 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶)
92 ss2in 4194 . . . . . . . . . . . . 13 ((𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
9385, 91, 92syl2an 596 . . . . . . . . . . . 12 ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
9493ad2antrl 728 . . . . . . . . . . 11 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
95 nfcv 2895 . . . . . . . . . . . . . . 15 𝑧 𝑥𝐵 𝐶
96 nfcsb1v 3870 . . . . . . . . . . . . . . . 16 𝑦𝑧 / 𝑦𝐵
9796, 2nfiun 4973 . . . . . . . . . . . . . . 15 𝑦 𝑥 𝑧 / 𝑦𝐵𝐶
98 csbeq1a 3860 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧𝐵 = 𝑧 / 𝑦𝐵)
9998iuneq1d 4969 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 𝑥𝐵 𝐶 = 𝑥 𝑧 / 𝑦𝐵𝐶)
10095, 97, 99cbvdisj 5070 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
101100biimpi 216 . . . . . . . . . . . . 13 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
102101ad3antlr 731 . . . . . . . . . . . 12 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
103 simplr 768 . . . . . . . . . . . 12 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑢𝐴𝑣𝐴))
104 id 22 . . . . . . . . . . . 12 (𝑢𝑣𝑢𝑣)
105 csbeq1 3849 . . . . . . . . . . . . . 14 (𝑧 = 𝑢𝑧 / 𝑦𝐵 = 𝑢 / 𝑦𝐵)
106105iuneq1d 4969 . . . . . . . . . . . . 13 (𝑧 = 𝑢 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
107 csbeq1 3849 . . . . . . . . . . . . . 14 (𝑧 = 𝑣𝑧 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
108107iuneq1d 4969 . . . . . . . . . . . . 13 (𝑧 = 𝑣 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
109106, 108disji2 5077 . . . . . . . . . . . 12 ((Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶 ∧ (𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
110102, 103, 104, 109syl2an3an 1424 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
111 sseq0 4352 . . . . . . . . . . 11 (((𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) ∧ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
11294, 110, 111syl2an2r 685 . . . . . . . . . 10 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
11379, 112pm2.61dane 3016 . . . . . . . . 9 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
114113expr 456 . . . . . . . 8 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
115114orrd 863 . . . . . . 7 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
116115ex 412 . . . . . 6 (((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
117116rexlimdvva 3190 . . . . 5 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
11859, 117biimtrid 242 . . . 4 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
119118ralrimivv 3174 . . 3 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
120 disjors 5076 . . 3 (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
121119, 120sylibr 234 . 2 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
12246, 121impbid1 225 1 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  csb 3846  cin 3897  wss 3898  c0 4282   ciun 4941  Disj wdisj 5060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-in 3905  df-ss 3915  df-nul 4283  df-iun 4943  df-disj 5061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator