MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxiun Structured version   Visualization version   GIF version

Theorem disjxiun 5144
Description: An indexed union of a disjoint collection of disjoint collections is disjoint if each component is disjoint, and the disjoint unions in the collection are also disjoint. Note that 𝐵(𝑦) and 𝐶(𝑥) may have the displayed free variables. (Contributed by Mario Carneiro, 14-Nov-2016.) (Proof shortened by JJ, 27-May-2021.)
Assertion
Ref Expression
disjxiun (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵   𝑦,𝐶
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑥)

Proof of Theorem disjxiun
Dummy variables 𝑠 𝑟 𝑢 𝑣 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfiu1 5030 . . . . . 6 𝑦 𝑦𝐴 𝐵
2 nfcv 2903 . . . . . 6 𝑦𝐶
31, 2nfdisjw 5124 . . . . 5 𝑦Disj 𝑥 𝑦𝐴 𝐵𝐶
4 disjss1 5118 . . . . . 6 (𝐵 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑥𝐵 𝐶))
5 ssiun2 5049 . . . . . 6 (𝑦𝐴𝐵 𝑦𝐴 𝐵)
64, 5syl11 33 . . . . 5 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (𝑦𝐴Disj 𝑥𝐵 𝐶))
73, 6ralrimi 3254 . . . 4 (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶)
87a1i 11 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → ∀𝑦𝐴 Disj 𝑥𝐵 𝐶))
9 simplr 767 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
10 ssiun2 5049 . . . . . . . . . . . . 13 (𝑢𝐴𝑢 / 𝑦𝐵 𝑢𝐴 𝑢 / 𝑦𝐵)
11 nfcv 2903 . . . . . . . . . . . . . 14 𝑢𝐵
12 nfcsb1v 3917 . . . . . . . . . . . . . 14 𝑦𝑢 / 𝑦𝐵
13 csbeq1a 3906 . . . . . . . . . . . . . 14 (𝑦 = 𝑢𝐵 = 𝑢 / 𝑦𝐵)
1411, 12, 13cbviun 5038 . . . . . . . . . . . . 13 𝑦𝐴 𝐵 = 𝑢𝐴 𝑢 / 𝑦𝐵
1510, 14sseqtrrdi 4032 . . . . . . . . . . . 12 (𝑢𝐴𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1615adantr 481 . . . . . . . . . . 11 ((𝑢𝐴𝑣𝐴) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
1716ad2antrl 726 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑢 / 𝑦𝐵 𝑦𝐴 𝐵)
18 csbeq1 3895 . . . . . . . . . . . . . 14 (𝑢 = 𝑣𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
1918sseq1d 4012 . . . . . . . . . . . . 13 (𝑢 = 𝑣 → (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵))
2019, 15vtoclga 3565 . . . . . . . . . . . 12 (𝑣𝐴𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2120adantl 482 . . . . . . . . . . 11 ((𝑢𝐴𝑣𝐴) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2221ad2antrl 726 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → 𝑣 / 𝑦𝐵 𝑦𝐴 𝐵)
2311, 12, 13cbvdisj 5122 . . . . . . . . . . . . . . . 16 (Disj 𝑦𝐴 𝐵Disj 𝑢𝐴 𝑢 / 𝑦𝐵)
2418disjor 5127 . . . . . . . . . . . . . . . 16 (Disj 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2523, 24sylbb 218 . . . . . . . . . . . . . . 15 (Disj 𝑦𝐴 𝐵 → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
26 rsp2 3274 . . . . . . . . . . . . . . 15 (∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅) → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
2725, 26syl 17 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝐵 → ((𝑢𝐴𝑣𝐴) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)))
2827imp 407 . . . . . . . . . . . . 13 ((Disj 𝑦𝐴 𝐵 ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
2928ord 862 . . . . . . . . . . . 12 ((Disj 𝑦𝐴 𝐵 ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅))
3029impr 455 . . . . . . . . . . 11 ((Disj 𝑦𝐴 𝐵 ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
3130adantlr 713 . . . . . . . . . 10 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)
32 disjiun 5134 . . . . . . . . . 10 ((Disj 𝑥 𝑦𝐴 𝐵𝐶 ∧ (𝑢 / 𝑦𝐵 𝑦𝐴 𝐵𝑣 / 𝑦𝐵 𝑦𝐴 𝐵 ∧ (𝑢 / 𝑦𝐵𝑣 / 𝑦𝐵) = ∅)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
339, 17, 22, 31, 32syl13anc 1372 . . . . . . . . 9 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ ((𝑢𝐴𝑣𝐴) ∧ ¬ 𝑢 = 𝑣)) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
3433expr 457 . . . . . . . 8 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (¬ 𝑢 = 𝑣 → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3534orrd 861 . . . . . . 7 (((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) ∧ (𝑢𝐴𝑣𝐴)) → (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3635ralrimivva 3200 . . . . . 6 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3718iuneq1d 5023 . . . . . . 7 (𝑢 = 𝑣 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
3837disjor 5127 . . . . . 6 (Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑢𝐴𝑣𝐴 (𝑢 = 𝑣 ∨ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅))
3936, 38sylibr 233 . . . . 5 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
40 nfcv 2903 . . . . . 6 𝑢 𝑥𝐵 𝐶
4112, 2nfiun 5026 . . . . . 6 𝑦 𝑥 𝑢 / 𝑦𝐵𝐶
4213iuneq1d 5023 . . . . . 6 (𝑦 = 𝑢 𝑥𝐵 𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
4340, 41, 42cbvdisj 5122 . . . . 5 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑢𝐴 𝑥 𝑢 / 𝑦𝐵𝐶)
4439, 43sylibr 233 . . . 4 ((Disj 𝑦𝐴 𝐵Disj 𝑥 𝑦𝐴 𝐵𝐶) → Disj 𝑦𝐴 𝑥𝐵 𝐶)
4544ex 413 . . 3 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶))
468, 45jcad 513 . 2 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
4714eleq2i 2825 . . . . . . . 8 (𝑟 𝑦𝐴 𝐵𝑟 𝑢𝐴 𝑢 / 𝑦𝐵)
48 eliun 5000 . . . . . . . 8 (𝑟 𝑢𝐴 𝑢 / 𝑦𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
4947, 48bitri 274 . . . . . . 7 (𝑟 𝑦𝐴 𝐵 ↔ ∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵)
50 nfcv 2903 . . . . . . . . . 10 𝑣𝐵
51 nfcsb1v 3917 . . . . . . . . . 10 𝑦𝑣 / 𝑦𝐵
52 csbeq1a 3906 . . . . . . . . . 10 (𝑦 = 𝑣𝐵 = 𝑣 / 𝑦𝐵)
5350, 51, 52cbviun 5038 . . . . . . . . 9 𝑦𝐴 𝐵 = 𝑣𝐴 𝑣 / 𝑦𝐵
5453eleq2i 2825 . . . . . . . 8 (𝑠 𝑦𝐴 𝐵𝑠 𝑣𝐴 𝑣 / 𝑦𝐵)
55 eliun 5000 . . . . . . . 8 (𝑠 𝑣𝐴 𝑣 / 𝑦𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5654, 55bitri 274 . . . . . . 7 (𝑠 𝑦𝐴 𝐵 ↔ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵)
5749, 56anbi12i 627 . . . . . 6 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
58 reeanv 3226 . . . . . 6 (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ↔ (∃𝑢𝐴 𝑟𝑢 / 𝑦𝐵 ∧ ∃𝑣𝐴 𝑠𝑣 / 𝑦𝐵))
5957, 58bitr4i 277 . . . . 5 ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) ↔ ∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵))
60 simplrr 776 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → ¬ 𝑟 = 𝑠)
6112, 2nfdisjw 5124 . . . . . . . . . . . . . . . . . . 19 𝑦Disj 𝑥 𝑢 / 𝑦𝐵𝐶
6213disjeq1d 5120 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6361, 62rspc 3600 . . . . . . . . . . . . . . . . . 18 (𝑢𝐴 → (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑥 𝑢 / 𝑦𝐵𝐶))
6463impcom 408 . . . . . . . . . . . . . . . . 17 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴) → Disj 𝑥 𝑢 / 𝑦𝐵𝐶)
65 disjors 5128 . . . . . . . . . . . . . . . . 17 (Disj 𝑥 𝑢 / 𝑦𝐵𝐶 ↔ ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6664, 65sylib 217 . . . . . . . . . . . . . . . 16 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶𝑢𝐴) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6766ad2ant2r 745 . . . . . . . . . . . . . . 15 (((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
6867adantr 481 . . . . . . . . . . . . . 14 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → ∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
69 simplrl 775 . . . . . . . . . . . . . . 15 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑟𝑢 / 𝑦𝐵)
70 simplrr 776 . . . . . . . . . . . . . . . 16 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑠𝑣 / 𝑦𝐵)
7118adantl 482 . . . . . . . . . . . . . . . 16 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑢 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
7270, 71eleqtrrd 2836 . . . . . . . . . . . . . . 15 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → 𝑠𝑢 / 𝑦𝐵)
7369, 72jca 512 . . . . . . . . . . . . . 14 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵))
74 rsp2 3274 . . . . . . . . . . . . . . 15 (∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
7574imp 407 . . . . . . . . . . . . . 14 ((∀𝑟 𝑢 / 𝑦𝐵𝑠 𝑢 / 𝑦𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑢 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7668, 73, 75syl2an2r 683 . . . . . . . . . . . . 13 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7776adantlrr 719 . . . . . . . . . . . 12 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7877ord 862 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
7960, 78mpd 15 . . . . . . . . . 10 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢 = 𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
80 ssiun2 5049 . . . . . . . . . . . . . 14 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶)
81 nfcv 2903 . . . . . . . . . . . . . . 15 𝑟𝐶
82 nfcsb1v 3917 . . . . . . . . . . . . . . 15 𝑥𝑟 / 𝑥𝐶
83 csbeq1a 3906 . . . . . . . . . . . . . . 15 (𝑥 = 𝑟𝐶 = 𝑟 / 𝑥𝐶)
8481, 82, 83cbviun 5038 . . . . . . . . . . . . . 14 𝑥 𝑢 / 𝑦𝐵𝐶 = 𝑟 𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶
8580, 84sseqtrrdi 4032 . . . . . . . . . . . . 13 (𝑟𝑢 / 𝑦𝐵𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶)
86 ssiun2 5049 . . . . . . . . . . . . . 14 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶)
87 nfcv 2903 . . . . . . . . . . . . . . 15 𝑠𝐶
88 nfcsb1v 3917 . . . . . . . . . . . . . . 15 𝑥𝑠 / 𝑥𝐶
89 csbeq1a 3906 . . . . . . . . . . . . . . 15 (𝑥 = 𝑠𝐶 = 𝑠 / 𝑥𝐶)
9087, 88, 89cbviun 5038 . . . . . . . . . . . . . 14 𝑥 𝑣 / 𝑦𝐵𝐶 = 𝑠 𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶
9186, 90sseqtrrdi 4032 . . . . . . . . . . . . 13 (𝑠𝑣 / 𝑦𝐵𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶)
92 ss2in 4235 . . . . . . . . . . . . 13 ((𝑟 / 𝑥𝐶 𝑥 𝑢 / 𝑦𝐵𝐶𝑠 / 𝑥𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
9385, 91, 92syl2an 596 . . . . . . . . . . . 12 ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
9493ad2antrl 726 . . . . . . . . . . 11 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶))
95 nfcv 2903 . . . . . . . . . . . . . . 15 𝑧 𝑥𝐵 𝐶
96 nfcsb1v 3917 . . . . . . . . . . . . . . . 16 𝑦𝑧 / 𝑦𝐵
9796, 2nfiun 5026 . . . . . . . . . . . . . . 15 𝑦 𝑥 𝑧 / 𝑦𝐵𝐶
98 csbeq1a 3906 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑧𝐵 = 𝑧 / 𝑦𝐵)
9998iuneq1d 5023 . . . . . . . . . . . . . . 15 (𝑦 = 𝑧 𝑥𝐵 𝐶 = 𝑥 𝑧 / 𝑦𝐵𝐶)
10095, 97, 99cbvdisj 5122 . . . . . . . . . . . . . 14 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
101100biimpi 215 . . . . . . . . . . . . 13 (Disj 𝑦𝐴 𝑥𝐵 𝐶Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
102101ad3antlr 729 . . . . . . . . . . . 12 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶)
103 simplr 767 . . . . . . . . . . . 12 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑢𝐴𝑣𝐴))
104 id 22 . . . . . . . . . . . 12 (𝑢𝑣𝑢𝑣)
105 csbeq1 3895 . . . . . . . . . . . . . 14 (𝑧 = 𝑢𝑧 / 𝑦𝐵 = 𝑢 / 𝑦𝐵)
106105iuneq1d 5023 . . . . . . . . . . . . 13 (𝑧 = 𝑢 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑢 / 𝑦𝐵𝐶)
107 csbeq1 3895 . . . . . . . . . . . . . 14 (𝑧 = 𝑣𝑧 / 𝑦𝐵 = 𝑣 / 𝑦𝐵)
108107iuneq1d 5023 . . . . . . . . . . . . 13 (𝑧 = 𝑣 𝑥 𝑧 / 𝑦𝐵𝐶 = 𝑥 𝑣 / 𝑦𝐵𝐶)
109106, 108disji2 5129 . . . . . . . . . . . 12 ((Disj 𝑧𝐴 𝑥 𝑧 / 𝑦𝐵𝐶 ∧ (𝑢𝐴𝑣𝐴) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
110102, 103, 104, 109syl2an3an 1422 . . . . . . . . . . 11 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅)
111 sseq0 4398 . . . . . . . . . . 11 (((𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) ⊆ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) ∧ ( 𝑥 𝑢 / 𝑦𝐵𝐶 𝑥 𝑣 / 𝑦𝐵𝐶) = ∅) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
11294, 110, 111syl2an2r 683 . . . . . . . . . 10 (((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) ∧ 𝑢𝑣) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
11379, 112pm2.61dane 3029 . . . . . . . . 9 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) ∧ ¬ 𝑟 = 𝑠)) → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)
114113expr 457 . . . . . . . 8 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (¬ 𝑟 = 𝑠 → (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
115114orrd 861 . . . . . . 7 ((((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) ∧ (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵)) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
116115ex 413 . . . . . 6 (((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) ∧ (𝑢𝐴𝑣𝐴)) → ((𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
117116rexlimdvva 3211 . . . . 5 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → (∃𝑢𝐴𝑣𝐴 (𝑟𝑢 / 𝑦𝐵𝑠𝑣 / 𝑦𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
11859, 117biimtrid 241 . . . 4 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → ((𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵) → (𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅)))
119118ralrimivv 3198 . . 3 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
120 disjors 5128 . . 3 (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ ∀𝑟 𝑦𝐴 𝐵𝑠 𝑦𝐴 𝐵(𝑟 = 𝑠 ∨ (𝑟 / 𝑥𝐶𝑠 / 𝑥𝐶) = ∅))
121119, 120sylibr 233 . 2 ((∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶) → Disj 𝑥 𝑦𝐴 𝐵𝐶)
12246, 121impbid1 224 1 (Disj 𝑦𝐴 𝐵 → (Disj 𝑥 𝑦𝐴 𝐵𝐶 ↔ (∀𝑦𝐴 Disj 𝑥𝐵 𝐶Disj 𝑦𝐴 𝑥𝐵 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  wral 3061  wrex 3070  csb 3892  cin 3946  wss 3947  c0 4321   ciun 4996  Disj wdisj 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4322  df-iun 4998  df-disj 5113
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator