Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjdifprg Structured version   Visualization version   GIF version

Theorem disjdifprg 32511
Description: A trivial partition into a subset and its complement. (Contributed by Thierry Arnoux, 25-Dec-2016.)
Assertion
Ref Expression
disjdifprg ((𝐴𝑉𝐵𝑊) → Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝑉(𝑥)   𝑊(𝑥)

Proof of Theorem disjdifprg
StepHypRef Expression
1 disjxsn 5104 . . . . . 6 Disj 𝑥 ∈ {∅}𝑥
2 simpr 484 . . . . . . . 8 ((𝐵𝑊𝐵 = ∅) → 𝐵 = ∅)
3 eqidd 2731 . . . . . . . 8 ((𝐵𝑊𝐵 = ∅) → ∅ = ∅)
4 id 22 . . . . . . . . . 10 (𝐵𝑊𝐵𝑊)
5 0ex 5265 . . . . . . . . . . 11 ∅ ∈ V
65a1i 11 . . . . . . . . . 10 (𝐵𝑊 → ∅ ∈ V)
74, 6preqsnd 4826 . . . . . . . . 9 (𝐵𝑊 → ({𝐵, ∅} = {∅} ↔ (𝐵 = ∅ ∧ ∅ = ∅)))
87adantr 480 . . . . . . . 8 ((𝐵𝑊𝐵 = ∅) → ({𝐵, ∅} = {∅} ↔ (𝐵 = ∅ ∧ ∅ = ∅)))
92, 3, 8mpbir2and 713 . . . . . . 7 ((𝐵𝑊𝐵 = ∅) → {𝐵, ∅} = {∅})
109disjeq1d 5085 . . . . . 6 ((𝐵𝑊𝐵 = ∅) → (Disj 𝑥 ∈ {𝐵, ∅}𝑥Disj 𝑥 ∈ {∅}𝑥))
111, 10mpbiri 258 . . . . 5 ((𝐵𝑊𝐵 = ∅) → Disj 𝑥 ∈ {𝐵, ∅}𝑥)
12 in0 4361 . . . . . 6 (𝐵 ∩ ∅) = ∅
13 elex 3471 . . . . . . . 8 (𝐵𝑊𝐵 ∈ V)
1413adantr 480 . . . . . . 7 ((𝐵𝑊𝐵 ≠ ∅) → 𝐵 ∈ V)
155a1i 11 . . . . . . 7 ((𝐵𝑊𝐵 ≠ ∅) → ∅ ∈ V)
16 simpr 484 . . . . . . 7 ((𝐵𝑊𝐵 ≠ ∅) → 𝐵 ≠ ∅)
17 id 22 . . . . . . . 8 (𝑥 = 𝐵𝑥 = 𝐵)
18 id 22 . . . . . . . 8 (𝑥 = ∅ → 𝑥 = ∅)
1917, 18disjprg 5106 . . . . . . 7 ((𝐵 ∈ V ∧ ∅ ∈ V ∧ 𝐵 ≠ ∅) → (Disj 𝑥 ∈ {𝐵, ∅}𝑥 ↔ (𝐵 ∩ ∅) = ∅))
2014, 15, 16, 19syl3anc 1373 . . . . . 6 ((𝐵𝑊𝐵 ≠ ∅) → (Disj 𝑥 ∈ {𝐵, ∅}𝑥 ↔ (𝐵 ∩ ∅) = ∅))
2112, 20mpbiri 258 . . . . 5 ((𝐵𝑊𝐵 ≠ ∅) → Disj 𝑥 ∈ {𝐵, ∅}𝑥)
2211, 21pm2.61dane 3013 . . . 4 (𝐵𝑊Disj 𝑥 ∈ {𝐵, ∅}𝑥)
2322ad2antlr 727 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = ∅) → Disj 𝑥 ∈ {𝐵, ∅}𝑥)
24 difeq2 4086 . . . . . . 7 (𝐴 = ∅ → (𝐵𝐴) = (𝐵 ∖ ∅))
25 dif0 4344 . . . . . . 7 (𝐵 ∖ ∅) = 𝐵
2624, 25eqtrdi 2781 . . . . . 6 (𝐴 = ∅ → (𝐵𝐴) = 𝐵)
27 id 22 . . . . . 6 (𝐴 = ∅ → 𝐴 = ∅)
2826, 27preq12d 4708 . . . . 5 (𝐴 = ∅ → {(𝐵𝐴), 𝐴} = {𝐵, ∅})
2928disjeq1d 5085 . . . 4 (𝐴 = ∅ → (Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥Disj 𝑥 ∈ {𝐵, ∅}𝑥))
3029adantl 481 . . 3 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = ∅) → (Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥Disj 𝑥 ∈ {𝐵, ∅}𝑥))
3123, 30mpbird 257 . 2 (((𝐴𝑉𝐵𝑊) ∧ 𝐴 = ∅) → Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥)
32 disjdifr 4439 . . 3 ((𝐵𝐴) ∩ 𝐴) = ∅
33 difexg 5287 . . . . 5 (𝐵𝑊 → (𝐵𝐴) ∈ V)
3433ad2antlr 727 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 = ∅) → (𝐵𝐴) ∈ V)
35 elex 3471 . . . . 5 (𝐴𝑉𝐴 ∈ V)
3635ad2antrr 726 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 = ∅) → 𝐴 ∈ V)
37 ssid 3972 . . . . . 6 (𝐵𝐴) ⊆ (𝐵𝐴)
38 ssdifeq0 4453 . . . . . . . 8 (𝐴 ⊆ (𝐵𝐴) ↔ 𝐴 = ∅)
3938notbii 320 . . . . . . 7 𝐴 ⊆ (𝐵𝐴) ↔ ¬ 𝐴 = ∅)
40 nssne2 4013 . . . . . . 7 (((𝐵𝐴) ⊆ (𝐵𝐴) ∧ ¬ 𝐴 ⊆ (𝐵𝐴)) → (𝐵𝐴) ≠ 𝐴)
4139, 40sylan2br 595 . . . . . 6 (((𝐵𝐴) ⊆ (𝐵𝐴) ∧ ¬ 𝐴 = ∅) → (𝐵𝐴) ≠ 𝐴)
4237, 41mpan 690 . . . . 5 𝐴 = ∅ → (𝐵𝐴) ≠ 𝐴)
4342adantl 481 . . . 4 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 = ∅) → (𝐵𝐴) ≠ 𝐴)
44 id 22 . . . . 5 (𝑥 = (𝐵𝐴) → 𝑥 = (𝐵𝐴))
45 id 22 . . . . 5 (𝑥 = 𝐴𝑥 = 𝐴)
4644, 45disjprg 5106 . . . 4 (((𝐵𝐴) ∈ V ∧ 𝐴 ∈ V ∧ (𝐵𝐴) ≠ 𝐴) → (Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥 ↔ ((𝐵𝐴) ∩ 𝐴) = ∅))
4734, 36, 43, 46syl3anc 1373 . . 3 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 = ∅) → (Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥 ↔ ((𝐵𝐴) ∩ 𝐴) = ∅))
4832, 47mpbiri 258 . 2 (((𝐴𝑉𝐵𝑊) ∧ ¬ 𝐴 = ∅) → Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥)
4931, 48pm2.61dan 812 1 ((𝐴𝑉𝐵𝑊) → Disj 𝑥 ∈ {(𝐵𝐴), 𝐴}𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  cdif 3914  cin 3916  wss 3917  c0 4299  {csn 4592  {cpr 4594  Disj wdisj 5077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-sn 4593  df-pr 4595  df-disj 5078
This theorem is referenced by:  disjdifprg2  32512  measssd  34212
  Copyright terms: Public domain W3C validator