![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjun0 | Structured version Visualization version GIF version |
Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
disjun0 | ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4527 | . . . . 5 ⊢ (∅ ∈ 𝐴 → {∅} ⊆ 𝐴) | |
2 | ssequn2 3984 | . . . . 5 ⊢ ({∅} ⊆ 𝐴 ↔ (𝐴 ∪ {∅}) = 𝐴) | |
3 | 1, 2 | sylib 210 | . . . 4 ⊢ (∅ ∈ 𝐴 → (𝐴 ∪ {∅}) = 𝐴) |
4 | 3 | disjeq1d 4819 | . . 3 ⊢ (∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) |
5 | 4 | biimparc 472 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
6 | simpl 475 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ 𝐴 𝑥) | |
7 | in0 4164 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅) |
9 | 0ex 4984 | . . . . 5 ⊢ ∅ ∈ V | |
10 | id 22 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
11 | 10 | disjunsn 29924 | . . . . 5 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
12 | 9, 11 | mpan 682 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
13 | 12 | adantl 474 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
14 | 6, 8, 13 | mpbir2and 705 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
15 | 5, 14 | pm2.61dan 848 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ∪ cun 3767 ∩ cin 3768 ⊆ wss 3769 ∅c0 4115 {csn 4368 ∪ ciun 4710 Disj wdisj 4811 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-nul 4983 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-sn 4369 df-iun 4712 df-disj 4812 |
This theorem is referenced by: carsggect 30896 |
Copyright terms: Public domain | W3C validator |