![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjun0 | Structured version Visualization version GIF version |
Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
disjun0 | ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4811 | . . . . 5 ⊢ (∅ ∈ 𝐴 → {∅} ⊆ 𝐴) | |
2 | ssequn2 4183 | . . . . 5 ⊢ ({∅} ⊆ 𝐴 ↔ (𝐴 ∪ {∅}) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (∅ ∈ 𝐴 → (𝐴 ∪ {∅}) = 𝐴) |
4 | 3 | disjeq1d 5121 | . . 3 ⊢ (∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) |
5 | 4 | biimparc 479 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
6 | simpl 482 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ 𝐴 𝑥) | |
7 | in0 4391 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅) |
9 | 0ex 5307 | . . . . 5 ⊢ ∅ ∈ V | |
10 | id 22 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
11 | 10 | disjunsn 32107 | . . . . 5 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
12 | 9, 11 | mpan 687 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
13 | 12 | adantl 481 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
14 | 6, 8, 13 | mpbir2and 710 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
15 | 5, 14 | pm2.61dan 810 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ∪ cun 3946 ∩ cin 3947 ⊆ wss 3948 ∅c0 4322 {csn 4628 ∪ ciun 4997 Disj wdisj 5113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-rmo 3375 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-iun 4999 df-disj 5114 |
This theorem is referenced by: carsggect 33630 |
Copyright terms: Public domain | W3C validator |