Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjun0 | Structured version Visualization version GIF version |
Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
disjun0 | ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4742 | . . . . 5 ⊢ (∅ ∈ 𝐴 → {∅} ⊆ 𝐴) | |
2 | ssequn2 4118 | . . . . 5 ⊢ ({∅} ⊆ 𝐴 ↔ (𝐴 ∪ {∅}) = 𝐴) | |
3 | 1, 2 | sylib 217 | . . . 4 ⊢ (∅ ∈ 𝐴 → (𝐴 ∪ {∅}) = 𝐴) |
4 | 3 | disjeq1d 5048 | . . 3 ⊢ (∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) |
5 | 4 | biimparc 480 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
6 | simpl 483 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ 𝐴 𝑥) | |
7 | in0 4326 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅) |
9 | 0ex 5232 | . . . . 5 ⊢ ∅ ∈ V | |
10 | id 22 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
11 | 10 | disjunsn 30942 | . . . . 5 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
12 | 9, 11 | mpan 687 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
13 | 12 | adantl 482 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
14 | 6, 8, 13 | mpbir2and 710 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
15 | 5, 14 | pm2.61dan 810 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ∪ cun 3886 ∩ cin 3887 ⊆ wss 3888 ∅c0 4257 {csn 4562 ∪ ciun 4925 Disj wdisj 5040 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-nul 5231 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rmo 3072 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-nul 4258 df-sn 4563 df-iun 4927 df-disj 5041 |
This theorem is referenced by: carsggect 32294 |
Copyright terms: Public domain | W3C validator |