Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjun0 Structured version   Visualization version   GIF version

Theorem disjun0 32543
Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.)
Assertion
Ref Expression
disjun0 (Disj 𝑥𝐴 𝑥Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥)
Distinct variable group:   𝑥,𝐴

Proof of Theorem disjun0
StepHypRef Expression
1 snssi 4788 . . . . 5 (∅ ∈ 𝐴 → {∅} ⊆ 𝐴)
2 ssequn2 4169 . . . . 5 ({∅} ⊆ 𝐴 ↔ (𝐴 ∪ {∅}) = 𝐴)
31, 2sylib 218 . . . 4 (∅ ∈ 𝐴 → (𝐴 ∪ {∅}) = 𝐴)
43disjeq1d 5098 . . 3 (∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥Disj 𝑥𝐴 𝑥))
54biimparc 479 . 2 ((Disj 𝑥𝐴 𝑥 ∧ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥)
6 simpl 482 . . 3 ((Disj 𝑥𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥𝐴 𝑥)
7 in0 4375 . . . 4 ( 𝑥𝐴 𝑥 ∩ ∅) = ∅
87a1i 11 . . 3 ((Disj 𝑥𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → ( 𝑥𝐴 𝑥 ∩ ∅) = ∅)
9 0ex 5287 . . . . 5 ∅ ∈ V
10 id 22 . . . . . 6 (𝑥 = ∅ → 𝑥 = ∅)
1110disjunsn 32542 . . . . 5 ((∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥𝐴 𝑥 ∧ ( 𝑥𝐴 𝑥 ∩ ∅) = ∅)))
129, 11mpan 690 . . . 4 (¬ ∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥𝐴 𝑥 ∧ ( 𝑥𝐴 𝑥 ∩ ∅) = ∅)))
1312adantl 481 . . 3 ((Disj 𝑥𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥𝐴 𝑥 ∧ ( 𝑥𝐴 𝑥 ∩ ∅) = ∅)))
146, 8, 13mpbir2and 713 . 2 ((Disj 𝑥𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥)
155, 14pm2.61dan 812 1 (Disj 𝑥𝐴 𝑥Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cun 3929  cin 3930  wss 3931  c0 4313  {csn 4606   ciun 4971  Disj wdisj 5090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-nul 5286
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rmo 3363  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-sn 4607  df-iun 4973  df-disj 5091
This theorem is referenced by:  carsggect  34279
  Copyright terms: Public domain W3C validator