![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjun0 | Structured version Visualization version GIF version |
Description: Adding the empty element preserves disjointness. (Contributed by Thierry Arnoux, 30-May-2020.) |
Ref | Expression |
---|---|
disjun0 | ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snssi 4813 | . . . . 5 ⊢ (∅ ∈ 𝐴 → {∅} ⊆ 𝐴) | |
2 | ssequn2 4199 | . . . . 5 ⊢ ({∅} ⊆ 𝐴 ↔ (𝐴 ∪ {∅}) = 𝐴) | |
3 | 1, 2 | sylib 218 | . . . 4 ⊢ (∅ ∈ 𝐴 → (𝐴 ∪ {∅}) = 𝐴) |
4 | 3 | disjeq1d 5123 | . . 3 ⊢ (∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ Disj 𝑥 ∈ 𝐴 𝑥)) |
5 | 4 | biimparc 479 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
6 | simpl 482 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ 𝐴 𝑥) | |
7 | in0 4401 | . . . 4 ⊢ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅ | |
8 | 7 | a1i 11 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅) |
9 | 0ex 5313 | . . . . 5 ⊢ ∅ ∈ V | |
10 | id 22 | . . . . . 6 ⊢ (𝑥 = ∅ → 𝑥 = ∅) | |
11 | 10 | disjunsn 32614 | . . . . 5 ⊢ ((∅ ∈ V ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
12 | 9, 11 | mpan 690 | . . . 4 ⊢ (¬ ∅ ∈ 𝐴 → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
13 | 12 | adantl 481 | . . 3 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → (Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥 ↔ (Disj 𝑥 ∈ 𝐴 𝑥 ∧ (∪ 𝑥 ∈ 𝐴 𝑥 ∩ ∅) = ∅))) |
14 | 6, 8, 13 | mpbir2and 713 | . 2 ⊢ ((Disj 𝑥 ∈ 𝐴 𝑥 ∧ ¬ ∅ ∈ 𝐴) → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
15 | 5, 14 | pm2.61dan 813 | 1 ⊢ (Disj 𝑥 ∈ 𝐴 𝑥 → Disj 𝑥 ∈ (𝐴 ∪ {∅})𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 Vcvv 3478 ∪ cun 3961 ∩ cin 3962 ⊆ wss 3963 ∅c0 4339 {csn 4631 ∪ ciun 4996 Disj wdisj 5115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-nul 5312 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rmo 3378 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-sn 4632 df-iun 4998 df-disj 5116 |
This theorem is referenced by: carsggect 34300 |
Copyright terms: Public domain | W3C validator |