![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > measxun2 | Structured version Visualization version GIF version |
Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
Ref | Expression |
---|---|
measxun2 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑀 ∈ (measures‘𝑆)) | |
2 | simp2r 1200 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑆) | |
3 | measbase 32796 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
4 | 1, 3 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑆 ∈ ∪ ran sigAlgebra) |
5 | simp2l 1199 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝑆) | |
6 | difelsiga 32732 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) | |
7 | 4, 5, 2, 6 | syl3anc 1371 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
8 | prelpwi 5404 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) | |
9 | 2, 7, 8 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) |
10 | prct 31631 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) | |
11 | 2, 7, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) |
12 | simp3 1138 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
13 | disjdifprg2 31494 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) | |
14 | prcom 4693 | . . . . . . . . 9 ⊢ {(𝐴 ∖ 𝐵), 𝐵} = {𝐵, (𝐴 ∖ 𝐵)} | |
15 | dfss 3928 | . . . . . . . . . . . 12 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
16 | 15 | biimpi 215 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
17 | incom 4161 | . . . . . . . . . . 11 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
18 | 16, 17 | eqtrdi 2792 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐴 ∩ 𝐵)) |
19 | 18 | preq2d 4701 | . . . . . . . . 9 ⊢ (𝐵 ⊆ 𝐴 → {(𝐴 ∖ 𝐵), 𝐵} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
20 | 14, 19 | eqtr3id 2790 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → {𝐵, (𝐴 ∖ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
21 | 20 | disjeq1d 5078 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
22 | 21 | biimprd 247 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥 → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
23 | 13, 22 | mpan9 507 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
24 | 5, 12, 23 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
25 | 11, 24 | jca 512 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
26 | measvun 32808 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) | |
27 | 1, 9, 25, 26 | syl3anc 1371 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) |
28 | 2, 7 | jca 512 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆)) |
29 | uniprg 4882 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = (𝐵 ∪ (𝐴 ∖ 𝐵))) | |
30 | undif 4441 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
31 | 30 | biimpi 215 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
32 | 29, 31 | sylan9eq 2796 | . . . 4 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = 𝐴) |
33 | 32 | fveq2d 6846 | . . 3 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
34 | 28, 12, 33 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
35 | simpr 485 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
36 | 35 | fveq2d 6846 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → (𝑀‘𝑥) = (𝑀‘𝐵)) |
37 | simpr 485 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → 𝑥 = (𝐴 ∖ 𝐵)) | |
38 | 37 | fveq2d 6846 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → (𝑀‘𝑥) = (𝑀‘(𝐴 ∖ 𝐵))) |
39 | measvxrge0 32804 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
40 | 1, 2, 39 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
41 | measvxrge0 32804 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) | |
42 | 1, 7, 41 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
43 | eqimss 4000 | . . . . . . . . 9 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 ⊆ (𝐴 ∖ 𝐵)) | |
44 | ssdifeq0 4444 | . . . . . . . . 9 ⊢ (𝐵 ⊆ (𝐴 ∖ 𝐵) ↔ 𝐵 = ∅) | |
45 | 43, 44 | sylib 217 | . . . . . . . 8 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 = ∅) |
46 | 45 | fveq2d 6846 | . . . . . . 7 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → (𝑀‘𝐵) = (𝑀‘∅)) |
47 | measvnul 32805 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
48 | 46, 47 | sylan9eqr 2798 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
49 | 1, 48 | sylan 580 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
50 | 49 | orcd 871 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞)) |
51 | 50 | ex 413 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 = (𝐴 ∖ 𝐵) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞))) |
52 | 36, 38, 2, 7, 40, 42, 51 | esumpr2 32666 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
53 | 27, 34, 52 | 3eqtr3d 2784 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∨ wo 845 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∖ cdif 3907 ∪ cun 3908 ∩ cin 3909 ⊆ wss 3910 ∅c0 4282 𝒫 cpw 4560 {cpr 4588 ∪ cuni 4865 Disj wdisj 5070 class class class wbr 5105 ran crn 5634 ‘cfv 6496 (class class class)co 7357 ωcom 7802 ≼ cdom 8881 0cc0 11051 +∞cpnf 11186 +𝑒 cxad 13031 [,]cicc 13267 Σ*cesum 32626 sigAlgebracsiga 32707 measurescmeas 32794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-ac2 10399 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-disj 5071 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-acn 9878 df-ac 10052 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-fac 14174 df-bc 14203 df-hash 14231 df-shft 14952 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-limsup 15353 df-clim 15370 df-rlim 15371 df-sum 15571 df-ef 15950 df-sin 15952 df-cos 15953 df-pi 15955 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-ordt 17383 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-ps 18455 df-tsr 18456 df-plusf 18496 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-mhm 18601 df-submnd 18602 df-grp 18751 df-minusg 18752 df-sbg 18753 df-mulg 18873 df-subg 18925 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-cring 19967 df-subrg 20220 df-abv 20276 df-lmod 20324 df-scaf 20325 df-sra 20633 df-rgmod 20634 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-fbas 20793 df-fg 20794 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cld 22370 df-ntr 22371 df-cls 22372 df-nei 22449 df-lp 22487 df-perf 22488 df-cn 22578 df-cnp 22579 df-haus 22666 df-tx 22913 df-hmeo 23106 df-fil 23197 df-fm 23289 df-flim 23290 df-flf 23291 df-tmd 23423 df-tgp 23424 df-tsms 23478 df-trg 23511 df-xms 23673 df-ms 23674 df-tms 23675 df-nm 23938 df-ngp 23939 df-nrg 23941 df-nlm 23942 df-ii 24240 df-cncf 24241 df-limc 25230 df-dv 25231 df-log 25912 df-esum 32627 df-siga 32708 df-meas 32795 |
This theorem is referenced by: measun 32810 |
Copyright terms: Public domain | W3C validator |