| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measxun2 | Structured version Visualization version GIF version | ||
| Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
| Ref | Expression |
|---|---|
| measxun2 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑀 ∈ (measures‘𝑆)) | |
| 2 | simp2r 1201 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑆) | |
| 3 | measbase 34194 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 5 | simp2l 1200 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝑆) | |
| 6 | difelsiga 34130 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) | |
| 7 | 4, 5, 2, 6 | syl3anc 1373 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| 8 | prelpwi 5410 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) | |
| 9 | 2, 7, 8 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) |
| 10 | prct 32645 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) | |
| 11 | 2, 7, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) |
| 12 | simp3 1138 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 13 | disjdifprg2 32512 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) | |
| 14 | prcom 4699 | . . . . . . . . 9 ⊢ {(𝐴 ∖ 𝐵), 𝐵} = {𝐵, (𝐴 ∖ 𝐵)} | |
| 15 | dfss 3936 | . . . . . . . . . . . 12 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
| 16 | 15 | biimpi 216 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
| 17 | incom 4175 | . . . . . . . . . . 11 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 18 | 16, 17 | eqtrdi 2781 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐴 ∩ 𝐵)) |
| 19 | 18 | preq2d 4707 | . . . . . . . . 9 ⊢ (𝐵 ⊆ 𝐴 → {(𝐴 ∖ 𝐵), 𝐵} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
| 20 | 14, 19 | eqtr3id 2779 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → {𝐵, (𝐴 ∖ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
| 21 | 20 | disjeq1d 5085 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
| 22 | 21 | biimprd 248 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥 → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
| 23 | 13, 22 | mpan9 506 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
| 24 | 5, 12, 23 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
| 25 | 11, 24 | jca 511 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
| 26 | measvun 34206 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) | |
| 27 | 1, 9, 25, 26 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) |
| 28 | 2, 7 | jca 511 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆)) |
| 29 | uniprg 4890 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = (𝐵 ∪ (𝐴 ∖ 𝐵))) | |
| 30 | undif 4448 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
| 31 | 30 | biimpi 216 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
| 32 | 29, 31 | sylan9eq 2785 | . . . 4 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = 𝐴) |
| 33 | 32 | fveq2d 6865 | . . 3 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
| 34 | 28, 12, 33 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
| 35 | simpr 484 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 36 | 35 | fveq2d 6865 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → (𝑀‘𝑥) = (𝑀‘𝐵)) |
| 37 | simpr 484 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → 𝑥 = (𝐴 ∖ 𝐵)) | |
| 38 | 37 | fveq2d 6865 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → (𝑀‘𝑥) = (𝑀‘(𝐴 ∖ 𝐵))) |
| 39 | measvxrge0 34202 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
| 40 | 1, 2, 39 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 41 | measvxrge0 34202 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) | |
| 42 | 1, 7, 41 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
| 43 | eqimss 4008 | . . . . . . . . 9 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 ⊆ (𝐴 ∖ 𝐵)) | |
| 44 | ssdifeq0 4453 | . . . . . . . . 9 ⊢ (𝐵 ⊆ (𝐴 ∖ 𝐵) ↔ 𝐵 = ∅) | |
| 45 | 43, 44 | sylib 218 | . . . . . . . 8 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 = ∅) |
| 46 | 45 | fveq2d 6865 | . . . . . . 7 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → (𝑀‘𝐵) = (𝑀‘∅)) |
| 47 | measvnul 34203 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
| 48 | 46, 47 | sylan9eqr 2787 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
| 49 | 1, 48 | sylan 580 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
| 50 | 49 | orcd 873 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞)) |
| 51 | 50 | ex 412 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 = (𝐴 ∖ 𝐵) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞))) |
| 52 | 36, 38, 2, 7, 40, 42, 51 | esumpr2 34064 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
| 53 | 27, 34, 52 | 3eqtr3d 2773 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 ∪ cun 3915 ∩ cin 3916 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {cpr 4594 ∪ cuni 4874 Disj wdisj 5077 class class class wbr 5110 ran crn 5642 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ≼ cdom 8919 0cc0 11075 +∞cpnf 11212 +𝑒 cxad 13077 [,]cicc 13316 Σ*cesum 34024 sigAlgebracsiga 34105 measurescmeas 34192 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-ordt 17471 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-ps 18532 df-tsr 18533 df-plusf 18573 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-abv 20725 df-lmod 20775 df-scaf 20776 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-tmd 23966 df-tgp 23967 df-tsms 24021 df-trg 24054 df-xms 24215 df-ms 24216 df-tms 24217 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 df-ii 24777 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-esum 34025 df-siga 34106 df-meas 34193 |
| This theorem is referenced by: measun 34208 |
| Copyright terms: Public domain | W3C validator |