Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measxun2 Structured version   Visualization version   GIF version

Theorem measxun2 34207
Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
measxun2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐴) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))

Proof of Theorem measxun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝑀 ∈ (measures‘𝑆))
2 simp2r 1201 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐵𝑆)
3 measbase 34194 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
41, 3syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝑆 ran sigAlgebra)
5 simp2l 1200 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐴𝑆)
6 difelsiga 34130 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
74, 5, 2, 6syl3anc 1373 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐴𝐵) ∈ 𝑆)
8 prelpwi 5410 . . . 4 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆)
92, 7, 8syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆)
10 prct 32645 . . . . 5 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} ≼ ω)
112, 7, 10syl2anc 584 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} ≼ ω)
12 simp3 1138 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐵𝐴)
13 disjdifprg2 32512 . . . . . 6 (𝐴𝑆Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
14 prcom 4699 . . . . . . . . 9 {(𝐴𝐵), 𝐵} = {𝐵, (𝐴𝐵)}
15 dfss 3936 . . . . . . . . . . . 12 (𝐵𝐴𝐵 = (𝐵𝐴))
1615biimpi 216 . . . . . . . . . . 11 (𝐵𝐴𝐵 = (𝐵𝐴))
17 incom 4175 . . . . . . . . . . 11 (𝐵𝐴) = (𝐴𝐵)
1816, 17eqtrdi 2781 . . . . . . . . . 10 (𝐵𝐴𝐵 = (𝐴𝐵))
1918preq2d 4707 . . . . . . . . 9 (𝐵𝐴 → {(𝐴𝐵), 𝐵} = {(𝐴𝐵), (𝐴𝐵)})
2014, 19eqtr3id 2779 . . . . . . . 8 (𝐵𝐴 → {𝐵, (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)})
2120disjeq1d 5085 . . . . . . 7 (𝐵𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥))
2221biimprd 248 . . . . . 6 (𝐵𝐴 → (Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥))
2313, 22mpan9 506 . . . . 5 ((𝐴𝑆𝐵𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)
245, 12, 23syl2anc 584 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)
2511, 24jca 511 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → ({𝐵, (𝐴𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥))
26 measvun 34206 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)) → (𝑀 {𝐵, (𝐴𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥))
271, 9, 25, 26syl3anc 1373 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥))
282, 7jca 511 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆))
29 uniprg 4890 . . . . 5 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} = (𝐵 ∪ (𝐴𝐵)))
30 undif 4448 . . . . . 6 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
3130biimpi 216 . . . . 5 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
3229, 31sylan9eq 2785 . . . 4 (((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} = 𝐴)
3332fveq2d 6865 . . 3 (((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = (𝑀𝐴))
3428, 12, 33syl2anc 584 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = (𝑀𝐴))
35 simpr 484 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
3635fveq2d 6865 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = 𝐵) → (𝑀𝑥) = (𝑀𝐵))
37 simpr 484 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = (𝐴𝐵)) → 𝑥 = (𝐴𝐵))
3837fveq2d 6865 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = (𝐴𝐵)) → (𝑀𝑥) = (𝑀‘(𝐴𝐵)))
39 measvxrge0 34202 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
401, 2, 39syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
41 measvxrge0 34202 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
421, 7, 41syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
43 eqimss 4008 . . . . . . . . 9 (𝐵 = (𝐴𝐵) → 𝐵 ⊆ (𝐴𝐵))
44 ssdifeq0 4453 . . . . . . . . 9 (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 = ∅)
4543, 44sylib 218 . . . . . . . 8 (𝐵 = (𝐴𝐵) → 𝐵 = ∅)
4645fveq2d 6865 . . . . . . 7 (𝐵 = (𝐴𝐵) → (𝑀𝐵) = (𝑀‘∅))
47 measvnul 34203 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
4846, 47sylan9eqr 2787 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴𝐵)) → (𝑀𝐵) = 0)
491, 48sylan 580 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝐵 = (𝐴𝐵)) → (𝑀𝐵) = 0)
5049orcd 873 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝐵 = (𝐴𝐵)) → ((𝑀𝐵) = 0 ∨ (𝑀𝐵) = +∞))
5150ex 412 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐵 = (𝐴𝐵) → ((𝑀𝐵) = 0 ∨ (𝑀𝐵) = +∞)))
5236, 38, 2, 7, 40, 42, 51esumpr2 34064 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))
5327, 34, 523eqtr3d 2773 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐴) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3914  cun 3915  cin 3916  wss 3917  c0 4299  𝒫 cpw 4566  {cpr 4594   cuni 4874  Disj wdisj 5077   class class class wbr 5110  ran crn 5642  cfv 6514  (class class class)co 7390  ωcom 7845  cdom 8919  0cc0 11075  +∞cpnf 11212   +𝑒 cxad 13077  [,]cicc 13316  Σ*cesum 34024  sigAlgebracsiga 34105  measurescmeas 34192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-ac2 10423  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154  ax-mulf 11155
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-ac 10076  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-ordt 17471  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-ps 18532  df-tsr 18533  df-plusf 18573  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-subrng 20462  df-subrg 20486  df-abv 20725  df-lmod 20775  df-scaf 20776  df-sra 21087  df-rgmod 21088  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-tmd 23966  df-tgp 23967  df-tsms 24021  df-trg 24054  df-xms 24215  df-ms 24216  df-tms 24217  df-nm 24477  df-ngp 24478  df-nrg 24480  df-nlm 24481  df-ii 24777  df-cncf 24778  df-limc 25774  df-dv 25775  df-log 26472  df-esum 34025  df-siga 34106  df-meas 34193
This theorem is referenced by:  measun  34208
  Copyright terms: Public domain W3C validator