Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measxun2 Structured version   Visualization version   GIF version

Theorem measxun2 34193
Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.)
Assertion
Ref Expression
measxun2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐴) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))

Proof of Theorem measxun2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝑀 ∈ (measures‘𝑆))
2 simp2r 1201 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐵𝑆)
3 measbase 34180 . . . . . 6 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
41, 3syl 17 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝑆 ran sigAlgebra)
5 simp2l 1200 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐴𝑆)
6 difelsiga 34116 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆𝐵𝑆) → (𝐴𝐵) ∈ 𝑆)
74, 5, 2, 6syl3anc 1373 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐴𝐵) ∈ 𝑆)
8 prelpwi 5402 . . . 4 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆)
92, 7, 8syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆)
10 prct 32688 . . . . 5 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} ≼ ω)
112, 7, 10syl2anc 584 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} ≼ ω)
12 simp3 1138 . . . . 5 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → 𝐵𝐴)
13 disjdifprg2 32555 . . . . . 6 (𝐴𝑆Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥)
14 prcom 4692 . . . . . . . . 9 {(𝐴𝐵), 𝐵} = {𝐵, (𝐴𝐵)}
15 dfss 3930 . . . . . . . . . . . 12 (𝐵𝐴𝐵 = (𝐵𝐴))
1615biimpi 216 . . . . . . . . . . 11 (𝐵𝐴𝐵 = (𝐵𝐴))
17 incom 4168 . . . . . . . . . . 11 (𝐵𝐴) = (𝐴𝐵)
1816, 17eqtrdi 2780 . . . . . . . . . 10 (𝐵𝐴𝐵 = (𝐴𝐵))
1918preq2d 4700 . . . . . . . . 9 (𝐵𝐴 → {(𝐴𝐵), 𝐵} = {(𝐴𝐵), (𝐴𝐵)})
2014, 19eqtr3id 2778 . . . . . . . 8 (𝐵𝐴 → {𝐵, (𝐴𝐵)} = {(𝐴𝐵), (𝐴𝐵)})
2120disjeq1d 5077 . . . . . . 7 (𝐵𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥))
2221biimprd 248 . . . . . 6 (𝐵𝐴 → (Disj 𝑥 ∈ {(𝐴𝐵), (𝐴𝐵)}𝑥Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥))
2313, 22mpan9 506 . . . . 5 ((𝐴𝑆𝐵𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)
245, 12, 23syl2anc 584 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)
2511, 24jca 511 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → ({𝐵, (𝐴𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥))
26 measvun 34192 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴𝐵)}𝑥)) → (𝑀 {𝐵, (𝐴𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥))
271, 9, 25, 26syl3anc 1373 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥))
282, 7jca 511 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆))
29 uniprg 4883 . . . . 5 ((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) → {𝐵, (𝐴𝐵)} = (𝐵 ∪ (𝐴𝐵)))
30 undif 4441 . . . . . 6 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
3130biimpi 216 . . . . 5 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
3229, 31sylan9eq 2784 . . . 4 (((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ 𝐵𝐴) → {𝐵, (𝐴𝐵)} = 𝐴)
3332fveq2d 6844 . . 3 (((𝐵𝑆 ∧ (𝐴𝐵) ∈ 𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = (𝑀𝐴))
3428, 12, 33syl2anc 584 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀 {𝐵, (𝐴𝐵)}) = (𝑀𝐴))
35 simpr 484 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵)
3635fveq2d 6844 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = 𝐵) → (𝑀𝑥) = (𝑀𝐵))
37 simpr 484 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = (𝐴𝐵)) → 𝑥 = (𝐴𝐵))
3837fveq2d 6844 . . 3 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝑥 = (𝐴𝐵)) → (𝑀𝑥) = (𝑀‘(𝐴𝐵)))
39 measvxrge0 34188 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵𝑆) → (𝑀𝐵) ∈ (0[,]+∞))
401, 2, 39syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐵) ∈ (0[,]+∞))
41 measvxrge0 34188 . . . 4 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝐵) ∈ 𝑆) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
421, 7, 41syl2anc 584 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀‘(𝐴𝐵)) ∈ (0[,]+∞))
43 eqimss 4002 . . . . . . . . 9 (𝐵 = (𝐴𝐵) → 𝐵 ⊆ (𝐴𝐵))
44 ssdifeq0 4446 . . . . . . . . 9 (𝐵 ⊆ (𝐴𝐵) ↔ 𝐵 = ∅)
4543, 44sylib 218 . . . . . . . 8 (𝐵 = (𝐴𝐵) → 𝐵 = ∅)
4645fveq2d 6844 . . . . . . 7 (𝐵 = (𝐴𝐵) → (𝑀𝐵) = (𝑀‘∅))
47 measvnul 34189 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0)
4846, 47sylan9eqr 2786 . . . . . 6 ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴𝐵)) → (𝑀𝐵) = 0)
491, 48sylan 580 . . . . 5 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝐵 = (𝐴𝐵)) → (𝑀𝐵) = 0)
5049orcd 873 . . . 4 (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) ∧ 𝐵 = (𝐴𝐵)) → ((𝑀𝐵) = 0 ∨ (𝑀𝐵) = +∞))
5150ex 412 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝐵 = (𝐴𝐵) → ((𝑀𝐵) = 0 ∨ (𝑀𝐵) = +∞)))
5236, 38, 2, 7, 40, 42, 51esumpr2 34050 . 2 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴𝐵)} (𝑀𝑥) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))
5327, 34, 523eqtr3d 2772 1 ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴𝑆𝐵𝑆) ∧ 𝐵𝐴) → (𝑀𝐴) = ((𝑀𝐵) +𝑒 (𝑀‘(𝐴𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  cdif 3908  cun 3909  cin 3910  wss 3911  c0 4292  𝒫 cpw 4559  {cpr 4587   cuni 4867  Disj wdisj 5069   class class class wbr 5102  ran crn 5632  cfv 6499  (class class class)co 7369  ωcom 7822  cdom 8893  0cc0 11044  +∞cpnf 11181   +𝑒 cxad 13046  [,]cicc 13285  Σ*cesum 34010  sigAlgebracsiga 34091  measurescmeas 34178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-inf2 9570  ax-ac2 10392  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122  ax-addf 11123  ax-mulf 11124
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-supp 8117  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-pm 8779  df-ixp 8848  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-fsupp 9289  df-fi 9338  df-sup 9369  df-inf 9370  df-oi 9439  df-dju 9830  df-card 9868  df-acn 9871  df-ac 10045  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-q 12884  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-ioo 13286  df-ioc 13287  df-ico 13288  df-icc 13289  df-fz 13445  df-fzo 13592  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-fac 14215  df-bc 14244  df-hash 14272  df-shft 15009  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-limsup 15413  df-clim 15430  df-rlim 15431  df-sum 15629  df-ef 16009  df-sin 16011  df-cos 16012  df-pi 16014  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17361  df-topn 17362  df-0g 17380  df-gsum 17381  df-topgen 17382  df-pt 17383  df-prds 17386  df-ordt 17440  df-xrs 17441  df-qtop 17446  df-imas 17447  df-xps 17449  df-mre 17523  df-mrc 17524  df-acs 17526  df-ps 18507  df-tsr 18508  df-plusf 18548  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-mhm 18692  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-mulg 18982  df-subg 19037  df-cntz 19231  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-cring 20156  df-subrng 20466  df-subrg 20490  df-abv 20729  df-lmod 20800  df-scaf 20801  df-sra 21112  df-rgmod 21113  df-psmet 21288  df-xmet 21289  df-met 21290  df-bl 21291  df-mopn 21292  df-fbas 21293  df-fg 21294  df-cnfld 21297  df-top 22814  df-topon 22831  df-topsp 22853  df-bases 22866  df-cld 22939  df-ntr 22940  df-cls 22941  df-nei 23018  df-lp 23056  df-perf 23057  df-cn 23147  df-cnp 23148  df-haus 23235  df-tx 23482  df-hmeo 23675  df-fil 23766  df-fm 23858  df-flim 23859  df-flf 23860  df-tmd 23992  df-tgp 23993  df-tsms 24047  df-trg 24080  df-xms 24241  df-ms 24242  df-tms 24243  df-nm 24503  df-ngp 24504  df-nrg 24506  df-nlm 24507  df-ii 24803  df-cncf 24804  df-limc 25800  df-dv 25801  df-log 26498  df-esum 34011  df-siga 34092  df-meas 34179
This theorem is referenced by:  measun  34194
  Copyright terms: Public domain W3C validator