| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > measxun2 | Structured version Visualization version GIF version | ||
| Description: The measure the union of two complementary sets is the sum of their measures. (Contributed by Thierry Arnoux, 10-Mar-2017.) |
| Ref | Expression |
|---|---|
| measxun2 | ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1136 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑀 ∈ (measures‘𝑆)) | |
| 2 | simp2r 1201 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ 𝑆) | |
| 3 | measbase 34233 | . . . . . 6 ⊢ (𝑀 ∈ (measures‘𝑆) → 𝑆 ∈ ∪ ran sigAlgebra) | |
| 4 | 1, 3 | syl 17 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝑆 ∈ ∪ ran sigAlgebra) |
| 5 | simp2l 1200 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐴 ∈ 𝑆) | |
| 6 | difelsiga 34169 | . . . . 5 ⊢ ((𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) → (𝐴 ∖ 𝐵) ∈ 𝑆) | |
| 7 | 4, 5, 2, 6 | syl3anc 1373 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐴 ∖ 𝐵) ∈ 𝑆) |
| 8 | prelpwi 5427 | . . . 4 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) | |
| 9 | 2, 7, 8 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆) |
| 10 | prct 32697 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) | |
| 11 | 2, 7, 10 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → {𝐵, (𝐴 ∖ 𝐵)} ≼ ω) |
| 12 | simp3 1138 | . . . . 5 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → 𝐵 ⊆ 𝐴) | |
| 13 | disjdifprg2 32562 | . . . . . 6 ⊢ (𝐴 ∈ 𝑆 → Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥) | |
| 14 | prcom 4713 | . . . . . . . . 9 ⊢ {(𝐴 ∖ 𝐵), 𝐵} = {𝐵, (𝐴 ∖ 𝐵)} | |
| 15 | dfss 3950 | . . . . . . . . . . . 12 ⊢ (𝐵 ⊆ 𝐴 ↔ 𝐵 = (𝐵 ∩ 𝐴)) | |
| 16 | 15 | biimpi 216 | . . . . . . . . . . 11 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐵 ∩ 𝐴)) |
| 17 | incom 4189 | . . . . . . . . . . 11 ⊢ (𝐵 ∩ 𝐴) = (𝐴 ∩ 𝐵) | |
| 18 | 16, 17 | eqtrdi 2787 | . . . . . . . . . 10 ⊢ (𝐵 ⊆ 𝐴 → 𝐵 = (𝐴 ∩ 𝐵)) |
| 19 | 18 | preq2d 4721 | . . . . . . . . 9 ⊢ (𝐵 ⊆ 𝐴 → {(𝐴 ∖ 𝐵), 𝐵} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
| 20 | 14, 19 | eqtr3id 2785 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → {𝐵, (𝐴 ∖ 𝐵)} = {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}) |
| 21 | 20 | disjeq1d 5099 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥 ↔ Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥)) |
| 22 | 21 | biimprd 248 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → (Disj 𝑥 ∈ {(𝐴 ∖ 𝐵), (𝐴 ∩ 𝐵)}𝑥 → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
| 23 | 13, 22 | mpan9 506 | . . . . 5 ⊢ ((𝐴 ∈ 𝑆 ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
| 24 | 5, 12, 23 | syl2anc 584 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥) |
| 25 | 11, 24 | jca 511 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) |
| 26 | measvun 34245 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ {𝐵, (𝐴 ∖ 𝐵)} ∈ 𝒫 𝑆 ∧ ({𝐵, (𝐴 ∖ 𝐵)} ≼ ω ∧ Disj 𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)}𝑥)) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) | |
| 27 | 1, 9, 25, 26 | syl3anc 1373 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥)) |
| 28 | 2, 7 | jca 511 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆)) |
| 29 | uniprg 4904 | . . . . 5 ⊢ ((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = (𝐵 ∪ (𝐴 ∖ 𝐵))) | |
| 30 | undif 4462 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
| 31 | 30 | biimpi 216 | . . . . 5 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
| 32 | 29, 31 | sylan9eq 2791 | . . . 4 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → ∪ {𝐵, (𝐴 ∖ 𝐵)} = 𝐴) |
| 33 | 32 | fveq2d 6885 | . . 3 ⊢ (((𝐵 ∈ 𝑆 ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
| 34 | 28, 12, 33 | syl2anc 584 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘∪ {𝐵, (𝐴 ∖ 𝐵)}) = (𝑀‘𝐴)) |
| 35 | simpr 484 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → 𝑥 = 𝐵) | |
| 36 | 35 | fveq2d 6885 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = 𝐵) → (𝑀‘𝑥) = (𝑀‘𝐵)) |
| 37 | simpr 484 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → 𝑥 = (𝐴 ∖ 𝐵)) | |
| 38 | 37 | fveq2d 6885 | . . 3 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝑥 = (𝐴 ∖ 𝐵)) → (𝑀‘𝑥) = (𝑀‘(𝐴 ∖ 𝐵))) |
| 39 | measvxrge0 34241 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 ∈ 𝑆) → (𝑀‘𝐵) ∈ (0[,]+∞)) | |
| 40 | 1, 2, 39 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐵) ∈ (0[,]+∞)) |
| 41 | measvxrge0 34241 | . . . 4 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∖ 𝐵) ∈ 𝑆) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) | |
| 42 | 1, 7, 41 | syl2anc 584 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘(𝐴 ∖ 𝐵)) ∈ (0[,]+∞)) |
| 43 | eqimss 4022 | . . . . . . . . 9 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 ⊆ (𝐴 ∖ 𝐵)) | |
| 44 | ssdifeq0 4467 | . . . . . . . . 9 ⊢ (𝐵 ⊆ (𝐴 ∖ 𝐵) ↔ 𝐵 = ∅) | |
| 45 | 43, 44 | sylib 218 | . . . . . . . 8 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → 𝐵 = ∅) |
| 46 | 45 | fveq2d 6885 | . . . . . . 7 ⊢ (𝐵 = (𝐴 ∖ 𝐵) → (𝑀‘𝐵) = (𝑀‘∅)) |
| 47 | measvnul 34242 | . . . . . . 7 ⊢ (𝑀 ∈ (measures‘𝑆) → (𝑀‘∅) = 0) | |
| 48 | 46, 47 | sylan9eqr 2793 | . . . . . 6 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
| 49 | 1, 48 | sylan 580 | . . . . 5 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → (𝑀‘𝐵) = 0) |
| 50 | 49 | orcd 873 | . . . 4 ⊢ (((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) ∧ 𝐵 = (𝐴 ∖ 𝐵)) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞)) |
| 51 | 50 | ex 412 | . . 3 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝐵 = (𝐴 ∖ 𝐵) → ((𝑀‘𝐵) = 0 ∨ (𝑀‘𝐵) = +∞))) |
| 52 | 36, 38, 2, 7, 40, 42, 51 | esumpr2 34103 | . 2 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → Σ*𝑥 ∈ {𝐵, (𝐴 ∖ 𝐵)} (𝑀‘𝑥) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
| 53 | 27, 34, 52 | 3eqtr3d 2779 | 1 ⊢ ((𝑀 ∈ (measures‘𝑆) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆) ∧ 𝐵 ⊆ 𝐴) → (𝑀‘𝐴) = ((𝑀‘𝐵) +𝑒 (𝑀‘(𝐴 ∖ 𝐵)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∪ cun 3929 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {cpr 4608 ∪ cuni 4888 Disj wdisj 5091 class class class wbr 5124 ran crn 5660 ‘cfv 6536 (class class class)co 7410 ωcom 7866 ≼ cdom 8962 0cc0 11134 +∞cpnf 11271 +𝑒 cxad 13131 [,]cicc 13370 Σ*cesum 34063 sigAlgebracsiga 34144 measurescmeas 34231 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-inf2 9660 ax-ac2 10482 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 ax-addf 11213 ax-mulf 11214 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-disj 5092 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-dju 9920 df-card 9958 df-acn 9961 df-ac 10135 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-rp 13014 df-xneg 13133 df-xadd 13134 df-xmul 13135 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-fl 13814 df-mod 13892 df-seq 14025 df-exp 14085 df-fac 14297 df-bc 14326 df-hash 14354 df-shft 15091 df-cj 15123 df-re 15124 df-im 15125 df-sqrt 15259 df-abs 15260 df-limsup 15492 df-clim 15509 df-rlim 15510 df-sum 15708 df-ef 16088 df-sin 16090 df-cos 16091 df-pi 16093 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-starv 17291 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-unif 17299 df-hom 17300 df-cco 17301 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-pt 17463 df-prds 17466 df-ordt 17520 df-xrs 17521 df-qtop 17526 df-imas 17527 df-xps 17529 df-mre 17603 df-mrc 17604 df-acs 17606 df-ps 18581 df-tsr 18582 df-plusf 18622 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-mhm 18766 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-mulg 19056 df-subg 19111 df-cntz 19305 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-cring 20201 df-subrng 20511 df-subrg 20535 df-abv 20774 df-lmod 20824 df-scaf 20825 df-sra 21136 df-rgmod 21137 df-psmet 21312 df-xmet 21313 df-met 21314 df-bl 21315 df-mopn 21316 df-fbas 21317 df-fg 21318 df-cnfld 21321 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-cld 22962 df-ntr 22963 df-cls 22964 df-nei 23041 df-lp 23079 df-perf 23080 df-cn 23170 df-cnp 23171 df-haus 23258 df-tx 23505 df-hmeo 23698 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-tmd 24015 df-tgp 24016 df-tsms 24070 df-trg 24103 df-xms 24264 df-ms 24265 df-tms 24266 df-nm 24526 df-ngp 24527 df-nrg 24529 df-nlm 24530 df-ii 24826 df-cncf 24827 df-limc 25824 df-dv 25825 df-log 26522 df-esum 34064 df-siga 34145 df-meas 34232 |
| This theorem is referenced by: measun 34247 |
| Copyright terms: Public domain | W3C validator |